

The Asymmetric Effects of Exchange Rate on Inflation: A Quantile NARDL Approach

Lorena Skufi
co-authored with Altin Tanku

BCC 13th Annual Conference

18-19 September 2025, Geneva, Switzerland

Why Study Exchange Rate Pass-Through (ERPT)?

Inflation Targeting:

Exchange rate changes influence domestic inflation, particularly considering the high import content of CPI (Skufi, et al., 2024)

Literature on Albania

Traditional models & assume symmetry and homogeneity in ERPT (Hledik, et al., 2021; Skufi et al., 2019, Tanku, et al., 2007)

Research Question

Does the degree of ERPT vary depending on whether inflation is high or low?

What should be the correct policy response in the presence of non-linearity?

Approach and Contribution:

Approach

Contribution

Quantile Nonlinear Autoregressive Distributed Lags Shin et al. (2014) & Cho et al. (2015)

Vis-à-vis earlier approaches QNARDL allows us to test for the possibility that the time series are cointegrated...

...but the relationship is not linear along direction of change in exchange rate

...and the relationship is not linear along inflation levels

Introduces a novel methodology to the analysis of ERPT

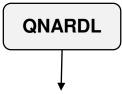
Expands the empirical literature on ERPT by providing country-specific evidence

Quantifies the asymmetry (depreciation vs. appreciation) and heterogeneity (across inflation quantiles)

Model Variables:

Inflation

Economic activity

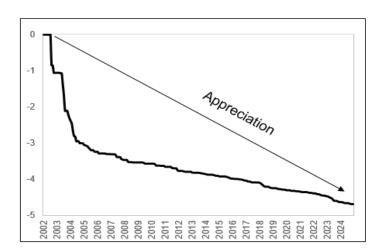

Money supply

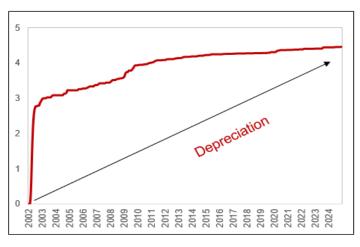
Monetary policy

Exchange rate

Foreign inflation

Oil prices


Exchange rate partial sum decomposition


$$LEK_EUR_t = LEK_EUR_t^0 + LEK_EUR_t^+ + LEK_EUR_t^-$$

$$LEK_{-}EUR_{t}^{+} = \sum_{j=1}^{t} \Delta LEK_{-}EUR_{j}^{+} = \sum_{j=1}^{t} max(\Delta LEK_{-}EUR_{j}, 0)$$

$$LEK_{-}EUR_{t}^{+} = \sum_{j=1}^{t} \Delta LEK_{-}EUR_{j}^{+} = \sum_{j=1}^{t} max(\Delta LEK_{-}EUR_{j}, 0)$$

$$LEK_{-}EUR_{t}^{-} = \sum_{j=1}^{t} \Delta LEK_{-}EUR_{j}^{-} = \sum_{j=1}^{t} min(\Delta LEK_{-}EUR_{j}, 0)$$

Source: Authors' calculations.

Note: The partial sum is calculated on LEK EUR natural logarithm values.

QNARDL Model:

Empirical representation

$$Q_{\Delta CPI\ AL_{t}}(\tau|\cdot) = \rho(\tau)(CPI_AL_{t-1} - \beta^{+}(\tau)LEK_EUR_{t-1}^{+} - \beta^{-}(\tau)LEK_EUR_{t-1}^{+})$$

$$\beta^{-}(\tau)LEK_{-}EUR_{t-1}^{-} - \phi_{1}(\tau)GDP_{t-1} - \phi_{2}(\tau)HCPI_{-}EA_{t-1} - \phi_{2}(\tau)HCPI_{-}EA_{t-1}$$

$$\phi_{3}(\tau)REPO_{t-1} - \phi_{4}(\tau)M2_{t-1} + \alpha(\tau) + \sum_{i=1}^{p-1} \gamma_{i}(\tau)\Delta CPI_AL_{t-i} +$$

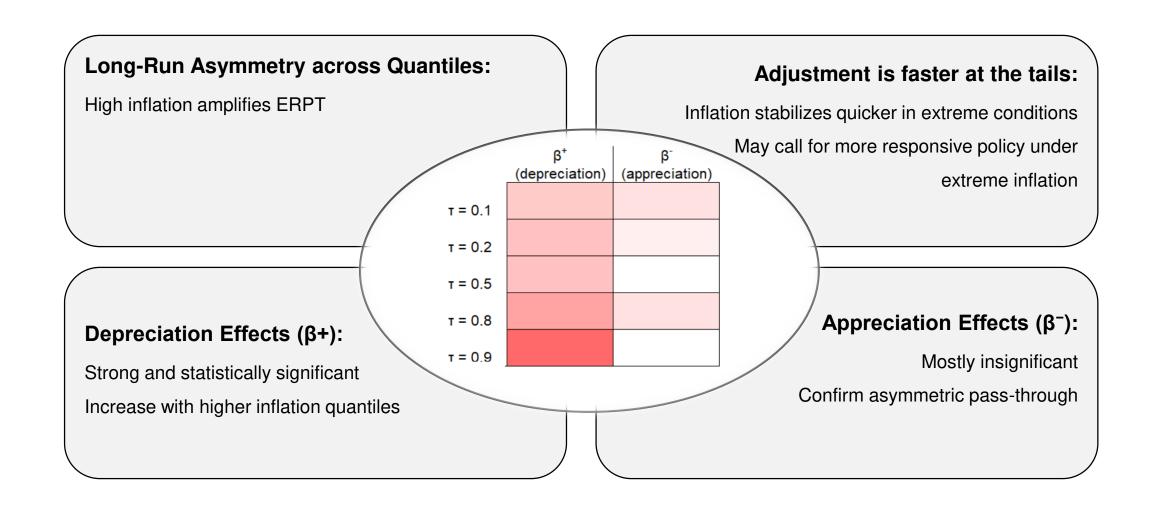
$$\textstyle \sum_{j=0}^{q-1} (\delta_j^+(\tau) \Delta LEK_-EUR_{t-j}^+ + \delta_j^-(\tau) \Delta LEK_-EUR_{t-j}^-) + \\$$

$$\sum_{l=0}^{s-1} (\theta_{1l}(\tau) \Delta GDP_{t-l} + \theta_{2l}(\tau) \Delta HCPI_EA_{t-l} + \theta_{3l}(\tau) \Delta REPO_{t-l} +$$

$$\theta_{4l}(\tau)\Delta M 2_{t-l}) + \sum_{m=0}^{r-1} \psi_m(\tau)\Delta P_0 I L_{t-m} + \varepsilon_t$$

where:

CPI_AL – inflation, LEK_EUR – exchange rate, GDP – economic activity, HCPI_EA-foreign inflation, REPO – monetary policy, M2 – money supply, P_OIL – oil price, τ – conditional quantile, ε – error term, t – time index, p,q,s,r – lags, the rest are parameters


Optimal lag length

Quantile index (τ)	CPI_AL	GDP HCPI_EA		REPO	REPO M2 LEK_EUR		P_OIL
0.1	1	6	0	0	3	2	1
0.2	1	5	0	0	2	0	1
0.5	1	1	0	0	3	0	0
0.8	2	2	0	0	2	0	1
0.9	2	5	0	3	2	0	2

Note: The AIC determines the optimal lag length.

Source: Authors' calculations.

Main findings:

Policy Takeaways:

ERPT is state-dependent: stronger during high inflation episodes

Depreciation shocks require closer policy attention

Conventional symmetric models may underestimate exchange rate risks

It is recommended to integrate asymmetry into monetary policy frameworks

Future work:

Specific channels through which asymmetries manifest

Sectoral inflation breakdown

Role of expectations and imported inflation

Thank you for attention!

Contact details:

Iskufi@bankofalbania.org

atanku@bankofalbania.org