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Abstract

Forecasting banking system liquidity is crucial for the effective monetary policy implementation.
This study investigates the effectiveness of various econometric and machine learning models in
predicting the autonomous factors of banking system liquidity. The research compares widely
used econometric models such as SARIMA, Exponential Smoothing, and Prophet alongside ma-
chine learning models like Random Forest, applying various preprocessing techniques, including
power transformations, scaling, and trend-cycle decomposition. Moreover, ensemble methods,
like weighted blending and stacking, were used to improve accuracy. Experimental results in-
dicate that SARIMA was the best individual model, but ensemble with Prophet and Random
Forest further improved forecast performance. Neural network models underperformed poten-
tially due to challenges in optimizing their architectures. Future research intends to explore
multivariate and structural models, as well as advanced neural architectures, to enhance pre-
dictive accuracy.
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1 Introduction

The Central Bank of Uzbekistan (CBU) has made significant improvements in revising
its monetary policy framework with changing its monetary policy regime into Inflation
Targeting (IT) since early 2018, prioritizing price stability and setting an inflation target
of 5 percent annually.

Managing the banking system liquidity and interbank lending interest rates are of
utmost importance for a central bank with a mandate of price stability since these are
the direct ways of translating the central bank’s decisions into the economy. The main
instrument used for determining the monetary operations’ rates is the policy rate of the
CBU, which is set by the Managing Board of the Central Bank eight times per year. By
conducting monetary operations, the central bank seeks to achieve its operational target
— ensuring the formation of money market interest rates on overnight deposits within
an interest rate corridor close to the key rate of the Central Bank, which is expected to
assist in achieving the main target — inflation.

The research aims to examine a variety of econometric and machine learning models
for time series analysis to forecast autonomous factors affecting banking system liquidity
using large payment system data. The objective is to identify the most effective models
and utilize them to predict the overall liquidity of the banking system. This research
objective is both scientifically significant and policy-relevant, addressing a critical need
within the central bank’s monetary operations framework.

Let us clarify the usage of the term banking system liquidity. The CBU, as a bank of
banks, provides banking services to commercial banks (the only type of depository insti-
tution legally allowed to operate in Uzbekistan), one of which is opening correspondent
accounts for the commercial banks to facilitate the payment system.

It is worth mentioning that the term liquidity can have multiple meanings in differ-
ent contexts of economics and finance. For example, the liquidity of an asset refers to
the speed (ease) with which it can be converted into cash without reducing its market
value. Additionally, there are liquidity requirements stipulated by the Basel Commit-
tee on Banking Supervision and subsequently adhered to by the CBU, which set certain
ratios for commercial banks to ensure they are always prepared to fulfill payment obliga-
tions to their customers promptly. However, in the context of monetary policy and hence
in this research, liquidity refers exclusively to the total amount of the balance stock of
correspondent accounts of commercial banks in the central bank.

What are liqudity factors? When banks carry out transactions on behalf of their
clients or themselves, the stock of their individual correspondent accounts changes ac-
cordingly. When the transaction is between two commercial banks, their accounts change,
but the overall liquidity is not affected since it is just the sum of all the stocks of indi-
vidual banks’ accounts. The other case is when one of the banks is the central bank. In
this case, when the central bank conducts financial operations with a commercial bank,
it simply adds or subtracts funds from the commercial bank’s account, changing the total
amount of liquidity in the banking system. For example, when the central bank extends
a loan to a commercial bank, it increases the amount of “Extended loans to commercial
banks” on the asset side of its balance sheet and also increases the stock of “Correspond-
ing accounts of commercial banks” on the liabilities side. Thus, the operations only with
the central bank affect the banking system liquidity. In the context of monetary oper-
ations, the focus is on forecasting the factors that affect the total amount of liquidity,
not the individual stock of each bank’s correspondent account, as that might be of lesser
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importance for fine-tuning monetary operations.
The operations, or in other words, factors, affecting the total amount of liquidity can

be divided into two broad groups: autonomous factors—operations that are beyond the
direct impact of the central bank; and non-autonomous factors—transactions that the
central bank conducts on its own initiative and thus can alter as it pleases.

Autonomous factors, such as currency in circulation, government operations, and net
foreign assets (purchase of monetary gold by the central bank from the local producers,
as well as, foreign exchange interventions), play a crucial role in determining the overall
liquidity in the banking system. The ability to accurately forecast these factors is essential
for central banks to implement precise and timely monetary interventions through open
market operations.

So, this work tries to find the answer for research question of “How can econometric
and machine learning models be effectively employed in time series analysis to forecast
autonomous factors affecting banking system liquidity, and which models most accurately
predict the overall liquidity of the banking system using large payment system data?”

The study aims to bridge the gap between traditional time series methodologies, such
as SARIMA and Exponential Smoothing, and modern machine learning techniques like
Random Forest and artificial neural networks. By leveraging these advanced models, we
aim to uncover patterns and trends in autonomous factors that were previously challeng-
ing to identify.

A comprehensive framework is proposed to evaluate the performance of these models
based on key forecasting metrics, including Mean Absolute Percentage Error (MAPE), R-
squared, Theil’s U, and a composite score. The analysis incorporates feature engineering
techniques to enhance model performance, including the extraction of time-based features,
seasonal decomposition, and treatment of heteroskedasticity.

In addition, this research explores ensembling techniques such as blending and stacking
to combine the strengths of individual models, aiming to achieve a robust and reliable
forecasting framework. By addressing challenges such as heteroskedasticity and model
uncertainty, the study seeks to provide policymakers with actionable insights and accurate
forecasts.

The findings of this research will contribute to the existing literature on liquidity
forecasting while providing practical tools for central banks to better manage monetary
policy implementation and ensure financial stability.

The structure of this paper is organized to provide a basic introduction to the method-
ologies, experiments, and findings in this research. After a brief literature review on
current stance of liquidity forecasting in Section 2, the main part of the paper begins
with the Section 3, outlining the data preprocessing techniques employed, which include
power transformations and scalers, that have been employed to prepare the time series
for modeling. This section also presents the individual forecasting models, including com-
mon econometric approaches such as SARIMA and machine learning models like Random
Forest and neural network based methods, along with their configurations and evaluation
metrics, as well as, ensemble learning methods, detailing the implementation of blending
and stacking techniques to combine individual model forecasts. Section 4 discusses the
results of the experiments, comparing the performance of individual models and ensem-
ble approaches on key metrics. Finally, the Conclusion part provides a discussion of the
findings, highlighting achievements, limitations, and directions for future research, em-
phasizing the potential of multivariate and structural models, as well as neural network
architectures, for improving forecasting accuracy.
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2 Literature Review

Forecasting the autonomous factors of banking system liquidity is a critical component
of effective monetary policy implementation. Over the years, researchers have explored
a wide range of econometric and machine learning models to address this challenge.

Understanding the importance of liquidity forecasting in central banking operations
is crucial. Works like Borio [1], which discusses the role of central banks in managing
liquidity, and Bindseil [2], which provides insights into central bank monetary policy
implementation, offer foundational knowledge.

Research by Kashyap et el. [3] explores the dual role of banks as liquidity providers
through both their lending activities and deposit-taking operations. The authors provide
a theoretical framework that explains how banks manage liquidity risk and contribute to
the transmission of monetary policy.

Econometric models have traditionally been the primary tools for time series fore-
casting in the financial domain. Seasonal Autoregressive Integrated Moving Average
(SARIMA) models, for instance, are well-suited for capturing linear relationships and
seasonal patterns in time series data. Studies such as [4] have demonstrated the efficacy
of SARIMA in financial forecasting. Similarly, exponential smoothing models, including
Holt-Winters methods, have been widely adopted for their simplicity and effectiveness in
capturing trends and seasonality [5] in combination with a dynamic computational graph
neural network system.

Studies like Sims [6] on VAR models lay the groundwork for analyzing interdepen-
dencies among financial time series, while Lütkepohl [7] provides advanced insights into
VAR modeling techniques that can be applied to liquidity forecasting.

Stock and Watson [8] introduce Dynamic Factor Models (DFM) as a tool for analyzing
economic indicators, which can be adapted to study the common factors affecting banking
liquidity, as demonstrated by Banbura et al. [9] in their exploration of large datasets.

Despite their widespread use, econometric models are often limited in their ability to
handle non-linear relationships and complex interactions among variables. This limitation
has motivated the exploration of machine learning approaches.

Bao et al. [10] illustrate the application of LSTM networks in stock market prediction,
offering insights into the potential of RNNs and LSTMs for liquidity forecasting. Research
by Varian [11] on the use of machine learning in economic forecasting provides a basis for
employing ensemble methods like Random Forests and LASSO for predicting liquidity
factors.

Advanced techniques like stacking and blending, which combine the strengths of mul-
tiple models, have further enhanced the performance of machine learning models in fore-
casting tasks. These ensemble methods mitigate the risk of overfitting and model-specific
biases by aggregating predictions from diverse models [12].

Studies focusing on the use of payment system data for liquidity analysis, such as Bech
and Garratt [13], highlight the potential of high-frequency transaction data in enhancing
liquidity forecasts, as it can provide real-time insights into banks’ liquidity management
strategies and their responses to different central bank policies.

Berger and Bouwman [14] offer insights into liquidity creation in banks, suggesting
that a data-driven approach, leveraging large datasets, can provide a more nuanced un-
derstanding of liquidity dynamics.

The literature reveals a growing interest in applying advanced econometric and ma-
chine learning techniques to financial forecasting, with a particular emphasis on liquidity
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management in the banking sector. However, there appears to be a gap in comprehensive
studies that integrate these methodologies with large payment system data to forecast
banking system liquidity.

This research, aiming to examine and compare the effectiveness of these models in
predicting liquidity factors, addresses this gap and contributes to both the theoretical
and practical aspects of liquidity management in central banking.

3 Data and Methodology

3.1 Data Description

The dataset that was used for model estimations and testing the results contains transaction-
level data from two systems: Interbank Payment System that operates as a RTGS (Real-
Time Gross Settlement) system and ANOR (Instant Payment System), which are the
main platforms for interbank payments.

The Interbank Payment System (RTGS) of the Central Bank of Uzbekistan is a critical
component of the country’s financial infrastructure. It is an electronic payment system
designed for the real-time settlement of interbank payments, which ensures the instant
transfer of funds between banks. All commercial banks are connected to this system,
which operates on the principle of gross settlement, meaning each transaction is settled
individually rather than being grouped together.

RTGS functions between 9:00 and 17:00 on weekdays, during which banks can send
payment instructions to the Central Bank’s Clearing Center, which is responsible for the
continuous processing and settlement of transactions. This system plays a crucial role in
maintaining liquidity positions of commercial banks as they can use the funds that are
transferred to their accounts instantly.

The ANOR system functions as Uzbekistan’s instant payment system, providing 24/7
processing on a netting basis. Launched to complement RTGS from February of 2020,
ANOR supports transactions among business entities, as well as, government operations,
even on the weekends and holidays.

The data structure for the study includes:

• Transaction metadata (date, time, sending and receiving bank IDs).

• Transaction value (total amounts transferred) and purpose.

• Client information (clients’ account numbers, names, taxpayer ID).

Daily transaction data from the RTGS and ANOR systems provides rich, granular
information about interbank liquidity movements. In the context of this research, only
the transactions between the central bank and commercial banks will be used to generate
time series data. The reason for using only these transactions is because they directly
influence the overall level banking system’s liquidity.

In 2024, in each of RTGS and ANOR, there were on average approximately 200,000
transactions daily between the Central Bank (including the government operations) and
commercial banks, which contribute to the autonomous factors of liquidity. For this re-
search, we aim to analyze combined daily transaction data from both payment systems
starting from the year 2018 (ANOR data is available from February 2020). Each trans-
action includes the information about the date, transaction value, and purpose, as well
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as the initiating and receiving banks’ identifiers (a 3-digit code), clients’ names, bank
account numbers (a 20-digit code), and taxpayer identification numbers (a 9-digit code).

For each autonomous factor of liquidity, a time series were constructed from daily
bank transaction data. The time series corresponding to cash transactions is shown as a
representative example to demonstrate the data preprocessing steps and modeling results
for clarity and to streamline the analysis.

Figure 1: Original series Figure 2: Distribution

As evident from the Figures 1 and 2, the data exhibits significant daily variability
and a highly positively skewed distribution. For the purpose of liquidity forecasting in
monetary operations, using weekly or 10-day aggregated data (Figure 3) and forecasts
proves to be more practical. Additionally, increased aggregation of the data reduces
variability, enhancing the stability of the forecasts.

Figure 3: 10-day aggregated series Figure 4: Distribution

For the majority of econometric and machine learning models, it is essential that the
time series exhibits both trend and variance stationarity [15]. However, this require-
ment conflicts with the patterns observed in the plots and statistical tests, such as the
Augmented Dickey-Fuller (ADF) test [16] for mean stationarity, which yielded a p-value
of 0.3675, and Engle’s test for Autoregressive Conditional Heteroscedasticity (ARCH)
[17], which indicated statistically significant heteroscedasticity with a near-zero p-value.
Furthermore, most machine learning models perform more effectively when the data is
centrally distributed with no heavy tails. To achieve a more desirable data representation,
we present various power transformations and data scaling techniques below.
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3.2 Data Transformation Techniques

Data transformation involves modifying the format, structure, or values of data to make
it easier for interpretation or make it more suitable for algorithmic processing. Key
transformation techniques include:

3.2.1 Power transformations

• Logarithmic Transformation is useful for managing skewed data by compressing
large values, reducing the relative difference between small and large values, thereby
stabilizing variance and reducing the influence of extreme outliers [18].

Figure 5: Logarithmic transformed Figure 6: Distribution

• Square Root Transformation also helps mitigate the effects of high variance in
the data by reducing the spread of larger values relative to smaller ones.

Figure 7: Square Root transformed Figure 8: Distribution

• Box-Cox Transformation is widely applied to convert non-normal data into a
more normal-like distribution [19]. It is defined as:

y =

{

xλ
−1
λ

, if λ 6= 0

log(x), if λ = 0

Here, λ is determined by maximizing the log-likelihood function. It is important
to note that the Box-Cox transformation requires all input values to be strictly
positive.
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Figure 9: Box-Cox transformed Figure 10: Distribution

• Yeo-Johnson Transformation is an extension of the Box-Cox method, allowing
power transformations on variables that include zero or negative values, alongside
positive values [20]. This transformation is particularly useful when preprocessing
the net effect of an autonomous factor on overall liquidity, which may include nega-
tive values. Additionally, it is effective after applying scalers, such as the standard
or robust scaler, which may shift the positive data into the negative axis.

3.2.2 Scaling

Scaling adjusts the range of values in the data without distorting the relative proportions
between them (Figures 11-16). Common scaling methods include:

• Min-Max Scaling: Rescales the values to a specified range, typically [0, 1]. It is
defined as:

x′ =
x− xmin

xmax − xmin

where xmin and xmax are the minimum and maximum values of the feature, respec-
tively.

Figure 11: Min-Max scaled Figure 12: Distribution

• Standard Scaling: Centers the data to mean zero with a standard deviation of
one:

x′ =
x− µ

σ
where µ is the mean and σ is the standard deviation of the feature.
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Figure 13: Standard scaled Figure 14: Distribution

• Robust Scaling: Scales the data using statistics that are robust to outliers. It
subtracts the median and scales according to the interquartile range (IQR):

x′ =
x−median(x)

IQR(x)

where IQR = Q3 − Q1 is the difference between the 75th (Q3) and 25th (Q1)
percentiles.

Figure 15: Robust scaled Figure 16: Distribution

These methods are essential for ensuring uniformity in feature magnitudes when deal-
ing with multiple features, thereby improving the performance and convergence of ma-
chine learning models. Even in the case of univariate methods, in the absence of scaling,
large input values can lead to a ML model that has learned excessively large weight val-
ues, which is often unstable meaning that it may suffer from poor performance during
learning (training), on top of that resulting in higher generalization error [21].

3.2.3 Trend-cycle split

To ensure the mean stationarity of the data for some models, we apply detrending tech-
niques and compare two approaches for calculating trends: the Hodrick-Prescott (HP)
filter [22] and Generalized Least Squares (GLS) detrending [23].
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Description of Methods

1. Hodrick-Prescott (HP) Filter: The HP filter decomposes a time series yt into
a trend component τt and a cyclical component ct (Figure 17 [Note: the detrended
series in the plots were vertically shifted upward by adding a constant to enhance
visual clarity]), such that:

yt = τt + ct

The trend component is estimated by minimizing the following objective function:

min
τ

T
∑

t=1

(yt − τt)
2 + λ

T−1
∑

t=2

((τt+1 − τt)− (τt − τt−1))
2

where λ is a smoothing parameter controlling the trade-off between the goodness
of fit and the smoothness of the trend. The value of λ is set to 129600 (1600 · 34)
after experimentation.

(a) Not transformed (b) Square root transformed

(c) Log transformed (d) Box-Cox transformed

Figure 17: HP filter detrending

2. Generalized Least Squares (GLS) Detrending: GLS detrending removes the
trend by regressing the time series yt on a deterministic time trend using generalized
least squares (Figure 18 [Note: the trend values in the plots were vertically shifted
upward by adding a constant to enhance visual clarity]). The detrended series is
obtained as the residuals of the regression. For example, for a linear trend:

yt = β0 + β1t+ εt

The trend β0 + β1t is subtracted from yt, leaving the stationary residual εt.
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(a) Not transformed (b) Square root transformed

(c) Log transformed (d) Box-Cox transformed

Figure 18: GLS detrending

By employing and comparing these methods, we evaluate the effectiveness of each in
achieving mean stationarity for further analysis.

3.3 Model taxonomy

There is a vast array of models available for forecasting time series in both econometric
and machine learning domains. These models can be classified based on the variables
they utilize, the model’s outcome, and whether they incorporate underlying economic or
financial theoretical structures, among other criteria. The following provides a structured
classification of these models [24], which is not an exhaustive list:

1. By the Number of Variables

• Local Univariate Models : separate models are trained independently for each
time series, with no shared parameters or data across series.

• Global Univariate Models : a single, global model is trained using data from
all available time series, but it is designed to predict only a univariate target.

• Multivariate Models : a single model is trained using all available data from
multiple time series to predict multivariate outcomes, capturing relationships
and dependencies across series.
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2. By the Forecast Outcome

• Probabilistic Forecast Models : these models predict the entire distribution of
possible future values, providing uncertainty estimates.

• Point Forecast Models : these models focus on specific values, such as the mean,
median, or other quantiles, without explicitly modeling uncertainty.

3. By the Forecast Horizon

• One-Step Forecast Models : these predict the next value in the series.

• Multi-Step Forecast Models : these predict multiple future values, either itera-
tively or directly.

4. By Structural Incorporation

• Structural Models : incorporate theoretical frameworks, such as economic or
financial principles, to guide the modeling process.

• Non-Structural Models : rely solely on data patterns without embedding domain-
specific theories.

In this research, we first aim to conduct experiments using only local univariate mod-
els, which do not include any structural elements, with one-step forecasts at a time and
build confidence intervals around the point estimate. The reason for starting with such
models is that they are simple and interpretabe, making them easier for gaining initial
insights and understanding the data patterns without introducing additional complexity.

In the next step of this long-term research work, we plan to experiment with other
kinds of models as well, namely, more structural and multivariate models to better capture
the interplay of economic and financial indicators.

3.4 Econometric Models

3.4.1 SARIMA

We begin our experimentation, often referred to as the “model horse racing,” with the
SARIMA (Seasonal Autoregressive Integrated Moving Average) model, as the data ex-
hibits pronounced seasonal patterns. SARIMA is an extension of the ARIMA (Autore-
gressive Integrated Moving Average) model, initially introduced by Box and Jenkins [25].
It has been widely applied in many domains practically so far, for example, economics
[26, 27], meteorology [28, 29], and retail [30, 31].

SARIMA is a univariate model that uses its own past values (lags) – autoregressive
part, differencing to impose stationarity when necessary – integrated part, error terms –
moving average part, to predict future values of a time series.

The general mathematical form of the SARIMA model is given as follows [32, 33]:

ΦP (B
s)φp(B)(1− B)d(1− Bs)Dyt = ΘQ(B

s)θq(B)εt,

where:

• B is the backward shift operator, such that Bkyt = yt−k.

• d and D represent the non-seasonal and seasonal differencing orders, respectively.
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• s denotes the length of the seasonal period.

• φp(B) and ΦP (B
s) are the non-seasonal and seasonal autoregressive (AR) operators

of orders p and P , respectively.

• θq(B) and ΘQ(B
s) are the non-seasonal and seasonal moving average (MA) opera-

tors of orders q and Q, respectively.

• εt is the white noise error term.

The model’s hyperparameters for the non-seasonal component are (p, d, q) and for the
seasonal component are (P,D,Q, s). SARIMA model can identify the interdependencies
within the data over both short-term lags and seasonal cycles, which allows it to effectively
model and forecast time series where seasonal patterns are profound.

Model Identification and estimation
To identify SARIMAmodel’s hyperameters for seasonal and non-seasonal components,

there is a well-known iterative Box-Jenkins procedure [25], which includes visually exam-
ining the data and fine-tuning hyperparameters accordingly. Since we plan to experiment
with different scalers, power transformations and many time series, such a procedure can
become relatively time-intensive and impractical for our purposes.

Instead of that, we utilize the auto arima function from Python’s pmdarima library.
This function efficiently determines the optimal hyperparameters by using statistical tests
and an iterative model-fitting process. Specifically, in our case, auto arima employs the
Akaike Information Criterion (AIC) to assess the goodness-of-fit and penalize model
complexity. It begins by performing a differencing test to estimate the optimal order
of differencing (d) for non-seasonal components. Once d is established, the function
iteratively fits models within parameter ranges for p (autoregressive order) and q (moving
average order) defined by the user.

For seasonal models, auto arima extends this functionality by identifying the sea-
sonal parameters P and Q. It first applies the Canova-Hansen test [34] to determine
the seasonal differencing order (D) and subsequently fits models over a grid of seasonal
hyperparameters.

To enhance computational efficiency, we employ the stepwise algorithm option
within auto arima. This approach systematically searches through the parameter space,
intelligently skipping certain combinations based on prior results. While a non-stepwise
method, which exhaustively explores all parameter combinations (similar to a grid search),
can be used, it is significantly slower, especially for datasets with pronounced seasonality.
The theoretical foundation for the stepwise algorithm is detailed in the work of Hyndman
and Khandakar [35].

By automating the hyperparameter selection process with auto arima, we save con-
siderable time and ensure consistency across our experiments, enabling us to focus on
evaluating transformations and comparing models effectively.

Once the hyperparameters of the SARIMA model are identified, the next crucial step
is to estimate the model’s parameters. Common methods for parameter estimation
include Maximum Likelihood Estimation (MLE) [32], Generalized Method of Moments
(GMM) [36], and Bayesian Estimation [37].

While each method has its advantages and drawbacks, some, like Bayesian Estimation,
are often preferred in certain contexts due to their ability to explicitly handle parame-
ter uncertainty and provide a probabilistic framework for modeling. However, Bayesian
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approaches can be computationally intensive and sensitive to the choice of prior distri-
butions, making them less practical for models with large datasets.

In this research, we adopt the Maximum Likelihood Estimation (MLE) method, which
is the most widely used approach for SARIMA models. The choice of MLE aligns with our
focus on accuracy and computational feasibility, especially when working with multiple
time series.

3.4.2 Prophet

Prophet, developed by Facebook [38], is a robust and flexible time series forecasting
tool designed to address common challenges such as missing data, outliers, and multiple
seasonality.

Prophet decomposes a time series into three main components: trend (g(t)), season-
ality (s(t)), and holidays (h(t)). The model can be represented as:

y(t) = g(t) + s(t) + h(t) + εt

where:
- y(t): Observed value at time t
- g(t): Trend component modeling long-term growth
- s(t): Seasonal component capturing periodic patterns
- h(t): Holiday component capturing effects of special events
- εt: Residual error term, assumed to be normally distributed with mean 0 and variance

σ2, i.e., εt ∼ N (0, σ2)

• The trend component can take two forms:

1. Piecewise Linear Trend:

g(t) = (k + a(t)>δ)t+ b

where:

- k: Initial growth rate

- a(t): Indicator function for change points

- δ: Adjustments to growth rates at change points

- b: Offset parameter

2. Logistic Growth Trend:

g(t) =
C

1 + exp(−k(t−m))

where:

- C: Carrying capacity

- k: Growth rate

- m: Time at which growth transitions to saturation

• The seasonality component is modeled using a Fourier series:

s(t) =
N
∑

n=1

[

an cos

(

2πnt

P

)

+ bn sin

(

2πnt

P

)]
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where:

- P : Period of the seasonality (e.g., 365.25 for yearly seasonality)

- N : Number of Fourier terms

- an, bn: Fourier coefficients

• The holiday effects are modeled as:

h(t) =
L
∑

i=1

1holidayi
(t) βi

where:

- 1holidayi
(t): Indicator function that equals 1 if t is within the holiday period i, 0

otherwise

- βi: Impact of holiday i

The parameters θ = {k, δ, an, bn, βi, σ
2} are estimated using maximum a posteriori

(MAP) estimation [39], leveraging regularization to prevent overfitting.
A key advantage of Prophet is its user-friendly parameter tuning, which enables do-

main experts with minimal statistical expertise to achieve accurate forecasts. Prophet is
particularly well-suited for business applications, such as cash flow prediction [40], food
prices forecasting [41] and anomaly detection [42], where handling irregularities in data
is essential.

In this research, we utilized Python’s prophet library to implement the forecasting
model with a linear trend. Three configurations were evaluated: the default Prophet
model (vanilla Prophet), Prophet with added monthly seasonality, and Prophet enhanced
with both monthly seasonality and holiday effects specific to Uzbekistan.

3.4.3 Exponential Smoothing

Exponential Smoothing is a forecasting technique that applies exponentially decreasing
weights to past observations, assigning more importance to recent data. This method is
highly versatile and can accommodate various data patterns, including level, trend, and
seasonality. Variations such as Holt’s Linear Trend Model [43] and Holt-Winters Seasonal
Model [44] extend the basic approach to capture trends and seasonal effects, respectively.
We make use of a Holt-Winters Seasonal Model with additive seasonality in this research
as per [45] using ExponentialSmoothing class from Python’s statsmodels.tsa.holtwinters
module:

Lt = α(Yt − St−m) + (1− α)(Lt−1 + Tt−1),

Tt = β(Lt − Lt−1) + (1− β)Tt−1,

St = γ(Yt − Lt) + (1− γ)St−m,

Ŷt+h = Lt + hTt + St−m+h,

where:
- Lt: Smoothed level at time t,
- Tt: Trend at time t,
- St: Seasonal component for period m,
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- Ŷt+h: Forecast for h periods ahead,
- α, β, γ ∈ [0, 1]: Smoothing parameters,
- m: Length of the seasonality.
The parameters are estimated by maximizing the likelihood function of the model

under the assumption of normally distributed errors. The likelihood function is defined
as:

L(θ) =
T
∏

t=1

1√
2πσ2

exp

(

−(Yt − Ŷt)
2

2σ2

)

,

where θ = (α, β, γ) are the smoothing parameters, and σ2 is the error variance.
Log-likelihood is used for computational convenience:

logL(θ) = −T

2
log(2πσ2)− 1

2σ2

T
∑

t=1

(Yt − Ŷt)
2.

The parameters are chosen to maximize logL(θ).
Exponential Smoothing is computationally efficient and is often favored for its sim-

plicity and effectiveness in short-term forecasting.

3.5 Machine Learning Models

The application of machine learning models in time series forecasting has gained signif-
icant attention due to their ability to handle complex patterns, non-linear relationships,
and high-dimensional data. This section explores key machine learning models used in
this research.

3.5.1 Tree-based methods

Decision trees (DT) are a completely different technique for predicting compared to linear
methods. Tree-based methods attempt to recursively segment the feature space (inde-
pendent variables) into simple regions, allowing decisions to be made about the values of
the predictor space (dependent variable). In its simpler forms, a single tree mimics the
process of human decision-making, and this process can be visualized, for example, as
a flowchart, which makes it interpretable. One disadvantage of single tree-based models
is that, in more complex problems, a tree may grow too large, leading to overfitting the
data, resulting in good performance on the training set but poor test error (bias-variance
trade off [46]).

For DT, there are several ways to avoid overfitting. The first technique is called
pruning [47], which involves growing a large tree and then pruning it back to obtain a
subtree. This is also known as cost-complexity pruning or weakest-link pruning. While
pruning can reduce the risk of overfitting, if not conducted with great care, it may lead
to underfitting due to the loss of potentially important information.

Another method is bootstrap aggregation, or bagging [48], which is implemented
by bootstrapping — sampling from the data with replacement — to create multiple
training sets. Large trees are then grown without pruning to obtain predictive models
with high variance. These possibly overfitted trees are averaged to produce a bagged
model with reduced variance. In practice, bagging has been shown to significantly improve
prediction accuracy [49]. However, one disadvantage of bagging is that the member trees
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are not entirely independent from each other due to sampling with replacement during
the bootstrapping process. This can result in dramatically different reductions in variance
across datasets.

Random forest [50] directly addresses this limitation by extending the concept of bag-
ging. To eliminate dependence (decorrelate) between the trees grown through bootstrap-
ping, constraints are introduced during the tree-growing process by randomly selecting
a subset of predictors from all possible ones at each split. In this process, fully grown
trees are used, as more important features may be selected in later splits. This approach
results in lower overall variance because each bootstrapped tree is now split differently.
For the final prediction, as in bagging, the predictions from all bootstrapped trees are
averaged for regression problems.

Considering the abovementioned advantages of the Random Forest models, in this
study, we use Python’s RandomForestRegressor model from the sklearn library to
forecast time series. The forecasting process consists of several steps (Figure 21):

• After loading the series, it is split into train and test sets. Approximately 5 percent
of the data is used for testing the performance.

• Feature engineering: year, month number and the decade number are extracted
from the dates of the time series as new features (independent variables). A Min-
Max scaler is applied for normalization. Although one-hot encoding is commonly
used for such categorical features, it resulted in poorer performance in our case.

• Different power transformations and scalers (Subsections 3.2.1 and 3.2.2) are applied
to the time series values in the train set.

• The processed series is split into trend and cycle components (detrending) using the
HP filter (Subsection 3.2.3) due to its ability to better capture a non-linear trend
evident in the series.

• For the trend component, Python’s auto arima function is used to find the ARIMA
model’s best hyperparameters.

• For the cycle component, to maintain temporal order in the dataset, TimeSeriesSplit
is employed with number of splits of 5 with expanding window instead of commonly
used KFold split for the cross-validation (CV) process (Figures 19-20).

Figure 19: KFold Figure 20: TimeSeriesSplit
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• For hyperparameter optimization, Optuna [51] is a powerful tool for exploring large
and complex parameter spaces efficiently, but its effectiveness depends on the pa-
rameter space definition, the number of trials, and evaluation consistency. On the
other hand, GridSearchCV, although computationally expensive, can outperform
Optuna in smaller, well-defined parameter spaces. Therefore, to achieve stable and
improved results, the optimal hyperparameters of the Random Forest model are
determined in two steps:

1) Using GridSearchCV, a strong initial set of hyperparameters is identified from
predefined possible set of parameters (Table 1).

Parameter name Description Values

bootstrap Whether bootstrapping is needed True, False

n estimators Number of trees in the forest 50, 150, 200, 250, 300, 400, 600

max depth Maximum depth of each tree 1, 3, 5, 10, 20, 30, 40, 60, 80, 100

min samples split
Minimum samples required to
split a node

1, 2, 5, 10

min samples leaf
Minimum samples required
at each leaf node

1, 2, 4

max features
Number of features to consider
at each split

1.0, ‘sqrt’, ‘log2’

Table 1: Parameter grid for GridSearchCV

2) Incorporating the best parameters from GridSearchCV as initial trials in Optuna,
which performs a more flexible search using its trial-based optimization frame-
work, hyperparameters are further refined with the number of trials of 250.

• To enhance robustness and diversity, a set of 10 best hyperparameters, consisting
of a hyperparameter set from GridSearchCV and 9 best hyperparameter sets from
Optuna, is selected to find the optimal number of Random Forest models to compute
the average forecast.

• the best Random Forest models are retrained on the entire train set and the cycle
component forecast is produced by averaging predictions from the optimal number
of models. This ensemble approach improves the stability and accuracy of the
forecast by mitigating the variance inherent in individual models.

• Trend forecast from ARIMA and cycle forecast from Random Forest are combined.

• To the resulting forecast, respective inverse scaler and power transformation are
applied to return the data to its original scale and distribution.

• Forecast performance metrics are calculated against the test set to estimate the
model’s accuracy.

Since random sampling is an inherent feature of Random Forest models, ensuring
reproducible and stable results requires setting a consistent random state. Therefore, a
consensus random state of 42 is used across all instances where providing a random seed
is applicable to the models.
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Load Time Series

Feature engineering

Train-Test split

Apply Power Transformations and Scalers

Trend vs Cycle split

Find best ARIMA model

using auto arima for Trend

Forecast Trend

Find hyperparameters for

RandomForestRegressor for Cycle

in two steps:

1. GridSearchCV with TimeSeriesSplit

2. Optimize hyperparameters with optuna

Find the optimal number of Random Forest models

Forecast Cycle

Combine Trend and Cycle forecasts

Apply Inverse Scaler and Power Transformations

Check performance metrics against test data

Figure 21: Flowchart of the Forecasting Process with Random Forest

3.5.2 Neural Networks

In recent years, neural networks have demonstrated remarkable predictive performance
when applied to sequential data, such as natural language in the form of text and audio,
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as well as music, video, and time series.
At their core, neural networks are just the chains of tensor operations, which are at

the same time complex geometric transformations of the input data in a high-dimensional
space [52]. Neural networks with deep architectures learn from data by determining the
reverse geometric transformations that best map the input to the desired output, using a
series of sequential and simple transformation steps. In practice, this is achieved through
a specialized optimization algorithm known as backpropagation [53].

The two widely used Machine learning (ML) techniques for sequential data, particu-
larly within the deep learning sub-field of ML, are Recurrent Neural Networks (RNNs)
and Long Short-Term Memory (LSTM). These are indispensable building blocks of larger
artificial neural network architectures that currently achieve state-of-the-art performance
[54, 55, 56], excelling at capturing temporal patterns and dependencies within the given
data.

Recurrent Neural Networks are able to process sequential data over multiple steps
thanks to their ability to maintain a memory unit, which is often called as a hidden
state. A memory unit is taken into account when processing the input data to generate
output for the next layers within the neural network’s architecture.

However, ordinary RNNs often struggle to address more complex tasks due to fun-
damental issues, such as information morphing, and technical challenges, such as the
vanishing gradient problem [57]. While the literature offers potential solutions [58, 59],
such as preserving memory through addition or subtraction operations [60] — which shift
rather than scale the memory — an improved variant of RNNs, designed to mitigate these
issues, is often preferred.

One of such kind of specially tailored neural networks, which was built specifically
to address the problem of vanishing gradient, is a Gated Recurrent Unit (GRU) [61]. It
employs the gating mechanisms to control the flow of information and to prevent the
issue of vanishing gradient. They are a simplified variant of LSTM units, with a lower
number of parameters, making them computationally less demanding at the same time
retaining their ability to learn the long-term patterns.

In this study, we employ an encoder-decoder approach, also known as autoencoders,
to construct a simple Sequence-to-Sequence (S2S) architecture using GRU units for time
series forecasting. Peng et al. [62] utilized a similar architectural model for host load
prediction on the Google Clusters dataset and the Dinda dataset and compared its per-
formance against two other highly proficient models, namely, Recurrent Neural Networks,
which was an LSTM-based network, and Echo State Networks, drawing the conclusion
that the GRU model with an autoencoder architecture outperformed both models across
both datasets.

3.5.3 Wavelet Transforms Combined with Neural Networks

The Wavelet-ANN method was introduced by Chan and Mehralizadeh [63], which is a
hybrid method that combines wavelet denoising with artificial neural network to forecast
financial futures markets. The main idea is to denoise the time series with wavelets
transforms, feature engineering from the financial technical indicators, then feed these
into a neural network model. The difference in our research from the paper’s approach
for forecasting is that the authors employ principal component analysis (PCA) to extract
principal components from financial indicators’ denoised Open, High, Low, Close price
values, while we do not conduct PCA because only single series is utilized at a time.
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As additional features for the neural network model a range of financial technical
indicators were computed. These include Relative Strength Index (RSI), Moving Average
Convergence Divergence (MACD), MACD Signal, MACD Histogram, Stochastics (slow
%K, and %D):

RSI = 100− 100

1 + Average Gain

Average Loss

MACD = EMAshort − EMAlong

where:

• EMAshort is the Exponential Moving Average with a shorter period (12 days).

• EMAlong is the Exponential Moving Average with a longer period (26 days).

MACD Signal = EMAsignal(MACD)

where EMAsignal is typically a 9-day Exponential Moving Average of the MACD.

MACD Histogram = MACD−MACD Signal

Slow %K = SMAslow(Fast %K)

where SMAslow is a Simple Moving Average applied to the Fast %K.

%D = SMAd(Slow %K)

where SMAd is a Simple Moving Average applied to the Slow %K.
As in the work of [63], we utilize 23 types of wavelet settings1 (see Table 2), with

decomposition levels ranging from 1 to 8 and five thresholding strategies: soft, hard,
garrote, greater, and less. For the artificial neural network component of the framework,
a sequential model comprising 3 to 5 LSTM layers (each with 50 units) was implemented
using Python’s keras module with default configuration settings. The model was trained
over 20 epochs with a batch size of 32.

Wavelet name Subsets

Haar haar
Daubechies db2, db3, db4, db5, db6, db7, db8, db9, db10
Symlets sym2, sym3, sym4, sym5, sym6, sym7, sym8
Coiflets coif1, coif2, coif3, coif4, coif5
DMeyer dmey

Table 2: Wavelet families and subsets

To sum up, each of these models offers distinct advantages, and their selection depends
on the characteristics of the time series and the forecasting objectives. By integrating
wavelet transforms, GRUs, and Random Forest, this research explores both traditional
and innovative approaches to time series modeling, aiming to identify the most effective
methodologies for forecasting autonomous factors of banking system liquidity.

1Subsets are presented in their shortened form as been appeared in Python’s wavedec function of the
pywt library

21



3.6 Ensemble Methods

In the practice of machine learning modeling, an ensemble of multiple models often out-
performs the best-performing individual model [64, 65]. The reason for this is that the
variance in the final individual model’s performance can be reduced by adding bias. This
is achieved by combining predictions from multiple models, a process commonly referred
to as ensemble learning. It is advised that the models used for ensembling have different
skills [21], for example, linear versus non-linear models or tree-based models versus neu-
ral networks. Additionally, since the training process of most machine learning models
involves stochastic elements, averaging the predictions from different runs helps ensure
consistent performance.

In this work, blending and stacking methods of ensemble learning [21], as well as,
inverse expected variance based weighting [66] are employed to combine forecasts from
multiple models. In blending, each model in the ensemble is assigned a weight, which
reflect the blending model’s confidence in its members’ predictions. Blending weights are
determined based on train Mean Absolute Error (MAE). Stacking uses another model
(meta-model) to learn optimal combinations of predictions. A linear regression model
was used as the meta-learner in this research. In the inverse expected variance method,
the weights of ensemble members are determined based on the inverse of their predicted
model variances.

3.7 Performance measurement

In this study, we select three commonly used indicators for evaluating the forecasting
performance of the models in financial time series modeling [67, 68, 69]:

• The Mean Absolute Percentage Error (MAPE) measures the average per-
centage difference between actual and predicted values. It is defined as:

MAPE =
1

n

n
∑

i=1

∣

∣

∣

∣

yi − ŷi
yi

∣

∣

∣

∣

A lower MAPE value indicates better forecasting accuracy.

• The R2 metric, or the coefficient of determination, indicates the proportion of
variance in the actual values that is predictable from the model. It is defined as:

R2 = 1−
∑n

i=1(yi − ŷi)
2

∑n

i=1(yi − ȳ)2

An R2 value closer to 1 indicates a better fit of the model.

• Theil’s U Statistic measures the relative accuracy of a forecasting model com-
pared to a naive model. It is defined as:

U =

√

1
n

∑n

i=1(yi − ŷi)2

√

1
n

∑n

i=1 y
2
i +

√

1
n

∑n

i=1 ŷ
2
i

Theil’s U value ranges between 0 and 1. A value closer to 0 indicates higher accu-
racy, while values near 1 suggest performance close to a naive model.
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In these equations, yi is an actual value at time i, ŷi is a predicted value at time i, ȳ
is the mean of actual values, n is the length of the forecasting period. Since the data is
split into training and test sets, all performance metrics are calculated using the test set,
meaning that the measurements reflect out-of-sample performance.

Choosing the best-performing models among potential candidates when they exhibit
conflicting metrics (i.e., MAPE, R-squared, Theil’s U) can be challenging. To address
this, we aggregate the metrics into a single performance score. A weighted composite
score [70] is calculated by normalizing the metrics and assigning appropriate weights.
This approach allows for ranking and selecting the optimal model configuration based on
a holistic evaluation of all metrics.

Calculating the composite score is conducted in the following steps:

• Step 1: Normalize each metric to a comparable scale (between 0 and 1).

• Step 2: Assign weights to each metric based on their importance for the applica-
tion. In our case, we set wMAPE = 2/3, wR2 = 1/6, wTheil’s U = 1/6. MAPE has more
weight because accuracy is prioritized.

• Step 3: Compute a composite score for each model using the weighted average of
the normalized metrics.

• Step 4: Choose the model with the lowest composite score.

The composite score can be computed as:

Score = wMAPE ·MAPEnorm + wR2 · (1−R2)norm + wTheil’s U · Theil’s Unorm

3.8 Estimating uncertainty of the forecasts

The models described so far produce only point forecasts. However, for policymakers, it
is more insightful to understand the uncertainty surrounding the forecast, expressed as
confidence intervals.

For SARIMA and Prophet, the confidence intervals provided by their respective model
forecasts were utilized [71, 72]. For Exponential Smoothing, constructing confidence
intervals around the point forecasts requires calculating the standard error of the forecast.
In this study, the standard error of the model’s forecast is determined under two scenarios:

1. Presence of Autoregressive Conditional Heteroscedasticity (ARCH) Ef-
fects:

• If the residuals exhibit ARCH effects based on Engle’s ARCH test, we model
the variance using a GARCH process.

• The order of the GARCH model is determined using grid search optimization.

2. Absence of ARCH Effects:

• If ARCH effects are not detected, the forecast variance is calculated as the
sum of the variance of the fitted values and the variance of the residuals. The
formula is given by (under the conditions of linearity, independence and zero
mean residuals):

Var(yforecast) = Var(yfitted) + σ2
residuals
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From the forecast variance, the standard error is computed, and the lower and upper
bounds of the confidence interval are calculated using the formulas:

Lower Bound = Point Forecast− zα · Forecast Standard Error

Upper Bound = Point Forecast + zα · Forecast Standard Error

Here, zα is the critical value from the standard normal distribution corresponding to
the desired significance level (α).

For the Random Forest model, the confidence intervals are constructed differently.
The lower and upper bounds are computed as the 2.5th and 97.5th percentiles of the pre-
dictions from individual trees, assuming a significance level of 5%. This approach directly
captures the variability across the ensemble of tree-based predictions, is computationally
not costly, and has favorable statistical properties, such as confidence intervals being
automatically invariant under monotonic transformations of the relevant amount [73],
which is useful for regression problems when power transformations are applied.

For the ensemble models, the variance is calculated as:

Var(yforecast) =
k
∑

i=1

w2
i · σ2

i + σ2
meta

where:

• wi represents the weight assigned to the i-th member model,

• σ2
i is the variance of the i-th member model,

• σ2
meta denotes the variance of the meta-model.

• k is the number of ensembling models

This formula accounts for the contribution of each individual model’s variance, weighted
by the square of their blending weights, as well as the variance of the meta-model.

4 Results

4.1 SARIMA

As described in previous sections, different configurations of SARIMA models were tested
using different combinations of power transformations and scalers to forecast the time se-
ries data for the Cash operations. The best-performing SARIMA model was identified
with no transformation and Min-Max scaling, achieving the lowest MAPE (0.1747), the
highest R2 (0.7774), and the lowest Theil’s U value (0.0903). This combination also
resulted in the lowest composite score, making it the optimal choice for forecasting (Ta-
ble 3).

The selected SARIMAmodel was fitted with the order (2, 1, 3)(1, 0, 1, 36) and excluded
the trend component. This configuration successfully captured the seasonal and non-
seasonal dynamics of the series, as can be seen from its forecasting accuracy. The forecast
plot (Figure 22) highlights the model’s ability to align closely with the actual data while
providing 95% confidence intervals around the forecast values.

2The comparison of power transformations is provided only for no transformation applied (none)
and the Yeo-Johnson transformation, as the latter is the most versatile and is chosen for the sake of
conciseness.
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Transformation2 Scaler MAPE R2 Theils U Composite Score

none minmax 0.1747 0.7774 0.0903 0.0000
none robust 0.1751 0.7775 0.0902 0.0003
none standard 0.1752 0.7764 0.0905 0.0005
yeo-johnson standard 0.1893 0.6694 0.1155 0.0211
yeo-johnson robust 0.1904 0.6596 0.1176 0.0227
yeo-johnson minmax 0.1881 0.6047 0.1270 0.0242
none none 0.2089 0.7587 0.0921 0.0309
yeo-johnson none 0.9343 -5.2088 0.8899 1.0000

Table 3: Forecast performance metrics comparison

Figure 22: SARIMA best model forecast and confidence intervals

4.2 Prophet

Prophet, a robust time series forecasting framework, was configured to incorporate monthly
seasonality and Uzbekistan-specific holidays with a linear trend. The results indicate that
Prophet demonstrates moderate forecasting accuracy, with varying degrees of effective-
ness depending on the preprocessing applied.

The best configuration for Prophet involved Yeo-Johnson transformation and Min-
Max scaling (Table 4). It is noteworthy that no transformation with no scaling produced
slightly worse results, with a MAPE of 0.1949 and a higher R2 of 0.6378, indicating that
for Prophet, scaling does not uniformly improve performance.

The results emphasize that data preprocessing significantly influences Prophet’s per-
formance. The inclusion of monthly seasonality and holiday effects appears to have im-
proved the model’s ability to capture key trends in the time series. The 95% confidence
intervals in the forecast plot (Figure 23) highlight Prophet’s ability to quantify uncer-
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Transformation Scaler MAPE R2 Theils U Composite Score

yeo-johnson minmax 0.1791 0.5459 0.1365 0.0104
none none 0.1949 0.6378 0.1159 0.0108
none minmax 0.1947 0.6351 0.1164 0.0109
none robust 0.2157 0.6336 0.1150 0.0245
none standard 0.2202 0.6361 0.1143 0.0272
yeo-johnson robust 0.2492 0.5927 0.1192 0.0499
yeo-johnson standard 0.2574 0.5805 0.1199 0.0560
yeo-johnson none 0.9365 -5.2210 0.8913 1.0000

Table 4: Forecast performance metrics comparison

tainty effectively, even though the intervals tend to widen during high-variance periods.

Figure 23: Prophet model forecast and confidence intervals

While Prophet does not outperform SARIMA in terms of R2 and MAPE for the
tested configurations, its robustness and flexibility make it a valuable tool for time series
forecasting.

4.3 Exponential Smoothing

Exponential Smoothing with seasonality and linear trend (Holt-Winter) model resulted in
less competitive compared to SARIMA and Prophet models (Table 5). No transformation
with standard, robust, or Min-Max scaling produced almost the same results with slightly
higher MAPE values and consistent R2 values around 0.3541.

The confidence intervals provided by the model reflect its uncertainty, as depicted in
the forecast plot (Figure 24).
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Transformation Scaler MAPE R2 Theils U Composite Score

yeo-johnson minmax 0.3254 0.3634 0.1445 0.0005
none standard 0.3524 0.3540 0.1421 0.0307
none robust 0.3524 0.3541 0.1421 0.0307
none minmax 0.3524 0.3541 0.1421 0.0307
none none 0.3609 0.3222 0.1447 0.0419
yeo-johnson robust 0.3809 0.1765 0.1586 0.0722
yeo-johnson standard 0.3840 0.1700 0.1590 0.0761
yeo-johnson none 0.9164 -4.9996 0.8602 1.0000

Table 5: Forecast performance metrics comparison

Figure 24: Exponential Smoothing model forecast and confidence intervals

While Exponential Smoothing offers a straightforward approach to forecasting, it
underperforms compared to SARIMA and Prophet models in terms of R2 and MAPE.
Nevertheless, the method’s simplicity and robustness make it a useful benchmark in
forecasting experiments.

4.4 Random Forest

Random forest was selected as one of the forecasting models due to its robustness in cap-
turing nonlinear relationships and its ensemble learning approach, which reduces over-
fitting. The model’s hyperparameters were optimized using a two-step process involving
GridSearchCV and Optuna. In the first step, GridSearchCV was employed to conduct
an exhaustive search over a predefined parameter grid using TimeSeriesSplit for cross-
validation. This provided a strong initial set of hyperparameters. The second step refined
these hyperparameters further using Optuna, which explores a broader parameter space
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in a trial-based optimization framework.
To ensure stability and reduce variability in the forecast, an ensemble of the top-

performing models was created by averaging their predictions. The composite score plot
(Figure 25) highlights how the inclusion of additional models affects the overall metrics,
showing the 1−R2 metric so that it is consistent with other error measures (e.g., MAPE
and Theil’s U) where lower values are better. This consistency underscores the reliability
of the composite score as a unifying metric for model selection.

Figure 25: Composite score and performance metrics of averaged models

The performance metrics for the Random Forest model, as shown in Table 6, reveal
the following:

• Best Transformation and Scaler Combination: The combination of the Yeo-Johnson
transformation and the Min-Max scaler achieved the best composite score (0.0114),
reflecting the most balanced performance across MAPE, R2, and Theil’s U.

• Grid Search vs. Optuna: In this specific case, the best-performing model came from
GridSearchCV rather than Optuna. However, this is not a general result and might
differ depending on the data and parameter space.

Transformation Scaler MAPE R2 Theils U Composite Score

yeo-johnson robust 0.2235 0.6108 0.1205 0.0129
yeo-johnson minmax 0.2244 0.6156 0.1199 0.0153
yeo-johnson standard 0.2264 0.6046 0.1214 0.0821
none standard 0.2621 0.4988 0.1350 0.9998

Table 6: Forecast performance metrics comparison

The forecast plot (Figure 26) demonstrates the actual values, mean predictions, and
95% prediction intervals for the Random Forest model. The prediction intervals were
computed as the 2.5th and 97.5th percentiles of tree predictions, providing a measure
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of uncertainty around the forecasts. The Random Forest model’s flexibility in combin-
ing models with diverse parameter sets ensures that its predictions are robust and less
sensitive to individual model biases.

Figure 26: Random Forest Regressor model forecast and confidence intervals

Figure 27: Multiple models forecasts comparison

In Figure 27, the comparison of better-performing models is presented. The plot
illustrates the actual values alongside the forecasts generated by the SARIMA, Prophet,
and Random Forest models. This visual comparison provides insights into how well each
model captures the patterns and variability in the data.

29



4.5 Neural Networks

Although neural network-based models are theoretically and practically promising for
time series forecasting, our experiments with GRU and LSTM units applied after wavelet
transforms showed relatively poorer performance compared to other models. Specifi-
cally, comparatively better results were achieved for GRUs when no power transforma-
tion was applied with a standard scaler, resulting in a MAPE of 0.357, R2 = −0.2221,
and Theil’s U = 0.2536, with a lookback window of 5 (Figure 28). For the wavelet-
transformed data with LSTM (WNN), the best configuration included a robust scaler,
sym8 wavelet, 5 levels of denoising, soft threshold rule, 3 levels of lookback, square-root
transformation, and no inclusion of technical indicators. This setup produced a MAPE
of 0.4411, R2 = −0.3868, and Theil’s U = 0.2392 (Figure 29). One of the key reasons
for their unacceptable performance is the negative R2, which indicates that the models’
predictions on average were worse than simply guessing the mean of the series.

Figure 28: GRU model forecast Figure 29: WNN model forecast

This may be attributed to the complexity involved in configuring the architecture of
neural networks. Determining the optimal set-up for the model specs, such as the num-
ber of hidden layers (depth), the number of nodes (width), activation functions, batch
sizes, loss functions, and combinations of various neural network types (e.g., multilayer,
convolutional, recurrent, gated, long short-term memory, and their combinations) lacks
a universally accepted rule of thumb [63, 74] or predefined procedure. Instead, better
calibration of these configurations typically rely on experience and trial-and-error experi-
mentation [75], and often, deeper research is needed to understand the optimal parameter
space and training dynamics [76], which can be time-intensive and challenging to opti-
mize effectively. Further experimenting with different architectures of neural networks is
planned for the next steps of the research.

4.6 Ensemble learning

The ensemble learning approach implemented in this study illustrates the effectiveness of
combining forecasts from multiple models, each employing different underlying method-
ologies, to improve the accuracy and robustness of predictions. The ensemble methods
tested include weighted blending, simple blending (simple average of the model forecasts),
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stacking, and inverse expected variance, each utilizing outputs from SARIMA, Prophet,
and Random Forest models because of their relatively good performances.

Weighted Blending. The weights for combining individual model predictions are de-
termined based on their train MAE (Mean Absolute Error), where lower MAE values
correspond to higher weights. The blended forecast formula is given as:

Blended Forecast = w1 · SARIMA+ w2 · Prophet + w3 · Random Forest.

Stacking combines the forecasts from individual models (SARIMA, Prophet, Ran-
dom Forest) as input features and uses Linear Regression as a meta-model to learn the
optimal combination of these forecasts. While stacking offers an alternate approach to
blending, the results indicate higher MAPE and lower R2 compared to weighted blending,
emphasizing the importance of the choice of the ensemble strategy.

The inverse expected variance method assigns ensemble weights using the normalized
inverses of the forecasted model variances. The advantage of this approach is that the
weights are no longer constant; instead, when a member model exhibits higher uncertainty
in its prediction for a particular period — reflected by a higher variance — it receives a
lower weight in the averaging process:

Ensemble Forecasti =
1

σ2
1,i

· SARIMAi +
1

σ2
2,i

· Propheti +
1

σ2
3,i

· Random Foresti.

where 1
σ2

k,i

is the normalized inverse variance of kth model in the ith period of forecasting.

This method ensures that models with higher confidence (lower variance) have a
stronger influence on the final prediction, dynamically adjusting model contributions
based on forecast uncertainty.

Ensemble method MAPE R2 Theils U Composite Score

Inverse variance 0.1658 0.6624 0.2592 0.1904
Simple blending 0.1731 0.6908 0.2524 0.2020
Weighted blending 0.1818 0.6753 0.2527 0.2685
Stacking 0.2753 0.4912 0.1346 0.8333

Table 7: Forecast performance metrics comparison

From the analysis (Table 7), inverse variance emerges as the most effective ensem-
ble method (Figure 30), outperforming even the SARIMA in terms of MAPE, achieving
the lowest MAPE among other ensemble models. This indicates its superior capability
to combine the strengths of SARIMA, Prophet, and Random Forest models for enhanced
forecasting accuracy. Moreover, the Diebold-Mariano test for predictive accuracy [77],
based on the mean absolute error on the out-of-sample forecast, indicates that this ensem-
ble method demonstrates a statistically significant difference compared to the individual
best-performing SARIMA model.

The stacking method, while theoretically robust, showed relatively weaker perfor-
mance in this context, highlighting the challenges of optimal meta-model selection for
this ensemble framework.

The visual comparisons in the provided plots (Figure 31) further supports these find-
ings, demonstrating the practical advantages of the ensemble approaches in reducing
forecasting errors and achieving more robust predictions.
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Figure 30: Inverse of expected variance ensemble forecast and confidence intervals

Figure 31: Ensemble methods comparison

5 Conclusion

This study conducted a “model horse racing” on some of the most widely used econo-
metric models for time series forecasting and machine learning models for regression and
sequential prediction problems to tackle the banking system liquidity forecasting prob-
lem, utilizing different data preprocessing techniques. The results of the experiments were
demonstrated only through one component of the autonomous factors of liquidity, namely
the cash outside the central bank, for the sake of conciseness and due to sensitive data
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issues. The best-performing individual model was SARIMA, which was outperformed by
the ensemble model employing inverse of expected variance of SARIMA, Prophet, and
Random Forest.

Despite the current relatively poor performance of neural network models, we maintain
confidence that they hold significant potential for time series forecasting, which was
not fully realized in this research owing to challenges in tuning their architectures and
constraints regarding to experimenting with hyperparameter optimization. Moreover,
the study focused mainly on local univariate models, while not utilizing the advantages
offered by multivariate models and economic structural elements.

Future research will address these limitations by conducting experiments with more
complex neural network architectures, and optimizing their configurations with more ad-
vanced search techniques, and extending the model base to include multivariate models
and incorporating structural elements, finally, exploring other promising ensemble meth-
ods to tackle the bias-variance trade-off. By addressing the aforementioned limitations
and proceeding with the proposed future directions, this continuation of research holds
promise for contributing further to the field of monetary policy and financial forecasting.

The implementation of the project in Python with the source code is available in
this GitHub repository: https://github.com/Shahzod-CBU/BCC_liquidity
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