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Abstract

This paper explores the application of machine learning (ML) techniques to nowcast
the monthly year-over-year growth rate of both total and non-primary GDP in Peru. Us-
ing a comprehensive dataset that includes over 170domestic and international predictors,
we assess the predictive performance of 12 ML models. The study compares these ML ap-
proaches against the traditionalDynamic FactorModel (DFM),which serves as thebench-
mark for nowcasting in economic research. We treat specific configurations, such as the
featurematrix rotations and the dimensionality reduction technique, as hyperparameters
that are optimized iteratively by the Tree-Structured Parzen Estimator. Our results show
that ML models outperformed DFM in nowcasting total GDP, and that they achieve sim-
ilar performance to this benchmark in nowcasting non-primary GDP. Furthermore, the
bottom-up approach appears to be the most effective practice for nowcasting economic
activity, as aggregating sectoral predictions improves the precision of ML methods. The
findings indicate that ML models offer a viable and competitive alternative to traditional
nowcasting methods.
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1 Introduction

Nowcasting, the estimation of an economy’s current state in near real-time, is a critical tool

in economic analysis, particularly for informing decision-making and policy formulation. Ini-

tially developed for meteorology, nowcasting has gained prominence in economics, as high-

lighted by seminal contributions fromGiannone, Reichlin and Small (2008) andBańbura et al.

(2013). Recent advancements in machine learning (ML) have demonstrated significant po-

tential for improving macroeconomic nowcasting, particularly by capturing nonlinear rela-

tionships that traditionalmodelsmay overlook. Extensive research has examinedML applica-

tions for nowcasting GDP in advanced economies; however, studies focusing on developing

economies, such as Peru, are increasing in number but remain relatively scarce.

This study builds upon the growing literature on ML-enhanced nowcasting by addressing

two primary challenges: (i) identifying a robust set of high-frequency indicators capable of

capturing real-time economic signals and (ii) selecting optimal predictive models to trans-

form these indicators into reliable estimates. To address these challenges, we construct a

comprehensive dataset spanningApril 2015 toAugust 2024, integrating over 170domestic and

international predictors. This dataset combines structuredmacroeconomic variableswith un-

structured sources such as Google Trends to provide a holistic approach to nowcasting.

The primary objective is to evaluate the performance of various ML algorithms in now-

casting Peru’s monthly year-over-year GDP growth rates—both total and non-primary GDP.

Testedmodels include regularization techniques (Ridge andLasso), tree-basedmethods (Ran-

dom Forest and XGBoost), and advanced approaches such as Support Vector Regression and

Neural Networks. Additionally, we benchmark these ML methods against a Dynamic Factor

Model (DFM), a standard tool for time-series nowcasting in economic research.

We tested variousmodel specifications, focusing on key aspects of the nowcasting process.

Specifically, we examined the use of expanding versus rollingwindows for the training sample,

compared the performance of K-Fold cross-validation againstWalk-Forward cross-validation,

and assessed different strategies for dimensionality reduction and feature matrix rotations
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to optimize model performance. These evaluations enabled us to identify the most effective

techniques for improving the accuracy of our ML models in nowcasting GDP.

Aclosely related study isTenorio andPerez (2023),whichalso investigatesMLapplications

for nowcasting PeruvianGDP. Our research stands out for using a broader set of predictors, ex-

tending the analysis to non-primary GDP, and adopting a bottom-up approach that predicts

sectoral GDP growth before aggregating results into overall GDP estimates. Furthermore, we

implement recursive hyperparameter optimization using the Tree-Structured Parzen Estima-

tor and evaluate dimensionality reduction techniques to enhance model performance.

The remainder of this paper is structured as follows: Section 2 reviews relevant literature

onGDPnowcasting andMLapplications. Section 3 describes the dataset and estimation strat-

egy, including preprocessing steps, sample splits, and hyperparameter optimization. Section

4presents results comparingmodel performance acrossdifferentmethodological approaches.

Finally, Section 5 concludes with implications for future research.

2 Literature Review

ML methods have become increasingly valuable for macroeconomic and financial forecast-

ing due to their ability to capture nonlinear relationships between predictors and target vari-

ables, particularly in high-dimensional datasets, where traditional econometric models often

fall short (Ahmed et al. (2010), Goulet Coulombe et al. (2022), Masini, Medeiros and Mendes

(2023)). This paper contributes to the growing body of research evaluating the effectiveness of

ML models for nowcasting real GDP growth. Numerous studies have demonstrated that ML

techniques can either rival or surpass standard statistical methods in improving nowcasting

accuracy.

Recent research has primarily focused on advanced economies. Soybilgen and Yazgan

(2021), Babii, Ghysels and Striaukas (2022), and Hopp (2024) applied ML techniques to now-

cast US GDP. Soybilgen and Yazgan (2021) employed bagged decision trees, random forests,

and stochastic gradient tree boosting models, while Hopp (2024) built on this by incorporat-
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ing long short-term memory (LSTM) networks and XGBoost alongside these models. Babii,

Ghysels and Striaukas (2022) introduced a structured ML regression approach tailored for

high-dimensional time seriesdata sampledat varying frequencies, demonstrating its effective-

ness in nowcasting US GDP growth. Similarly, Richardson, van Florenstein Mulder and Vehbi

(2021) applied a range of ML techniques, including ridge, Lasso, elastic net, and support vec-

tor machine (SVM) regression, to nowcast New Zealand’s GDP, showcasing the performance

of these methods beyond gradient boosting and neural networks. Kant, Pick and de Winter

(2022) conducted a comparable exercise for the Dutch economy, illustrating the adaptability

of ML models across different economic contexts.

For developing economies, several studies have also explored the potential of ML tech-

niques for nowcasting GDP. Zhang, Ni and Xu (2023) compared various ML algorithms with

DFMs, static factor models, and MIDAS for short-term forecasting of China’s annualized

GDP growth. Ghosh and Ranjan (2023) evaluated these approaches for a group of emerging

economies, while Dauphin et al. (2022) applied them to European countries. Muchisha et al.

(2021) focused on Indonesia, Fornaro and Luomaranta (2020) on Finland, and Tiffin (2016)

on Lebanon. Additionally, Buell et al. (2021) explored the use of ML models for nowcasting

GDP in Sub-Saharan Africa.

In Latin America, several studies have applied ML models to nowcasting GDP. Bolivar

(2024) utilized these methods for Bolivia, while León and Ortega (2018) employed artificial

neural networks (ANNs) to nowcast monthly economic activity in Colombia using electronic

payments data. BravoHiguera et al. (2024) investigated regularization techniques to generate

early estimates of agricultural GDP in Colombia. De Oliveira (2023) compared traditional sta-

tisticalmethods andML techniques for nowcasting BrazilianGDP, concluding that combining

MLpredictionswith traditionalmodels yielded the best results. Miranda (2021) applied Lasso

and deep neural networks to nowcast economic activity in Mexico.

In the case of Peru, research using ML techniques for nowcasting GDP remains limited.

One of the few recent studies in this area is by Tenorio and Perez (2023), who applied ML

methods to nowcast monthly Peruvian GDP using a large dataset that integrates both struc-
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tured and unstructured data sources.

This growing body of literature underscores the increasing relevance and effectiveness

of ML models in enhancing the accuracy and timeliness of GDP nowcasting across both ad-

vanced and developing economies.

3 Methodology

3.1 Models

This section provides an overview of the ML and benchmark models employed for nowcast-

ing Peruvian GDP. Details are provided in the original citations. It focuses primarily on the

selection of key hyperparameters and the out-of-sample exercise for evaluating nowcast per-

formance. Let 𝑦𝑡 and 𝑥𝑡 denote the target variable and the set of 𝑑 predictors, respectively.

Dynamic FactorModels: As a benchmark, we use a standardDFMbased on the framework of

Bańbura et al. (2013) and Mariano and Murasawa (2010), alongside a modified implementa-

tion in Python fromFulton (2020). DFMs assume that a reduced number of unobserved latent

factors can capture variability in a large set of observable macroeconomic and financial vari-

ables. This model facilitates the extraction of common information from a high-dimensional

dataset, which can then be used to predict key economic indicators like GDP.

The DFM is represented as:

𝑧𝑡 =𝐴𝑓𝑡 +𝑒𝑡

𝑓𝑡 =𝐴1𝑓𝑡−1+𝐴2𝑓𝑡−2+...+𝑢𝑡

where 𝑧𝑡 is an𝑁×1 vector of observable variables at time 𝑡; 𝑓𝑡 is an 𝑟×1 vector of unobserved

common factors; 𝐴 is an𝑁×𝑟 matrix of factor loadings; 𝐴1,𝐴2, ... are 𝑟×𝑟 autoregressive coef-

ficient matrices; 𝑒𝑡 is an𝑁×1 vector of idiosyncratic disturbances, and 𝑢𝑡 is an 𝑟 ×1 vector of

factor innovations. In our setup, 𝑧𝑡 = [𝑦𝑡 𝑥′𝑡]′ with𝑁 =𝑑+1. Detailed estimation procedures

are provided in the Appendix.
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Ridge, Lasso, and Elastic Net: These regularization techniques address model complexity

and mitigate overfitting by introducing penalty terms into regression models.

Ridge regression (𝐿2 Regularization) penalizes the sum of the squared magnitudes of the

coefficients, shrinking them toward zero without eliminating any predictors:

𝛽 = argmin
𝑇

𝑡=1

(𝑦𝑡 −𝛽0−
𝑑

𝑖=1

𝑥𝑖𝑡𝛽𝑖)2+𝜆
𝑑

𝑖=1

𝛽2𝑖 

Here, 𝜆 controls the degree of shrinkage, with larger values reducing the impact of less

significant predictors.

Lasso regression (𝐿1 regularization) penalizes the absolute values of coefficients, promot-

ing sparsitybydriving somecoefficients to zero. This approach isparticularlyuseful for feature

selection when only a subset of predictors is relevant:

𝛽 = argmin
𝑇

𝑡=1

(𝑦𝑡 −𝛽0−
𝑑

𝑖=1

𝑥𝑖𝑡𝛽𝑖)2+𝜆
𝑑

𝑖=1

|𝛽𝑖|

Elastic Net combines 𝐿2 (Ridge) and 𝐿1 (Lasso) penalties to balance coefficient shrinkage

and sparsity. The objective function is:

𝛽 = argmin
𝑇

𝑡=1

(𝑦𝑡 −𝛽0−
𝑑

𝑖=1

𝑥𝑖𝑡𝛽𝑖)2+𝜆
𝑑

𝑖=1
((1−𝛼)𝛽2𝑖 +𝛼|𝛽𝑖|)

Here, 𝜆 governs overall regularization strength, and 𝛼 (ranging from 0 to 1) determines

the trade-off between Ridge (𝐿2) and Lasso (𝐿1) penalties. When 𝛼 = 0, Elastic Net behaves

as Ridge; when 𝛼 = 1, it behaves as Lasso.

Support Vector Machine: The Support Vector Machine (SVM) algorithm for regression, com-

monly referred to as Support Vector Regression (SVR), was introduced by Cortes and Vapnik

(1995).It aims to identify a function that predicts the target variable 𝑦𝑡 with a maximum devi-

ation of 𝜖 from the actual targets while keeping the function as flat as possible. The predicting

model is expressed as:

𝑦𝑡 = 𝑏+𝑤∗𝑔(𝑥𝑡)+𝑒𝑡
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Here, 𝑏 is the bias term, 𝑤 is the weight vector, 𝑔(.) is a vector function that maps the input

feature vector into a high-dimensional feature space, 𝑥𝑡 is the input feature vector, and 𝑒𝑡
is the disturbance term. The concept of ”flatness” involves minimizing the magnitude of the

weight vector𝑤, ensuring thedecision functionhas the smallest possible slope. This approach

promotes generalization to unseen data, thereby reducing the risk of overfitting.

In practice, finding a function that keeps all deviationswithin 𝜖maynot always be feasible.

To accommodate this, the algorithm introduces slack variables 𝜉𝑖 and 𝜉∗𝑖 , which measure the

degree to which predictions 𝑓(𝑥) fall outside the allowable error margin. The optimization

problem for SVM regression is formulated as:

min 12||𝑤||
2+𝐶

𝑇

𝑡=1

(𝜉𝑡 +𝜉∗𝑡 )

subject to:
𝑦𝑡 −𝑤∗𝑔(𝑥𝑡)−𝑏 ≤ 𝜖+𝜉𝑡
𝑤∗𝑔(𝑥𝑡)+𝑏−𝑦𝑡 ≤ 𝜖+𝜉∗𝑡

The regularization parameter 𝐶 is critical in controlling the model’s complexity. A larger

𝐶 enforces stricter adherence to the 𝜖-tube by penalizing slack variables, which can increase

the risk of overfitting if the model becomes too complex. Conversely, a smaller 𝐶 allows for

more slack, enabling themodel to tolerate greater errormargins and improving generalization,

though it may lead to underfitting.

K-Nearest Neighbors: K-Nearest Neighbors (KNN), introduced by Fix andHodges (1951) and

further developed by Cover and Hart (1967), is a simple, yet powerful non-parametric ML al-

gorithm used for both classification and regression tasks. Unlike parametric models, KNN

does not assume a predefined relationship between predictors and the dependent variable.

Instead, it relies on the proximity of data points in the feature space,making predictions based

on the values of the 𝑘-nearest neighbors.

In regression, KNN predicts the outcome for a query point 𝑥𝑞 at time 𝑞 by averaging the

outcomes of the 𝑘-nearest observations in the training data. Distances between the query
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point 𝑥𝑞 and each observation 𝑥𝑡 in the training dataset are typically calculated using the Eu-

clidean distance:

𝑑(𝑥𝑞,𝑥𝑡) =

⎷

𝑑

𝑖=1
(𝑥𝑖𝑞−𝑥𝑖𝑡)2

Here, 𝑑 represents the number of dimensions (features) in the dataset, and 𝑥𝑡𝑖 denotes the

value of the 𝑖-th feature at time 𝑡. After identifying the 𝑘-nearest neighbors based on their

proximity to 𝑥𝑞, the predicted value 𝑦̂𝑞 is computed as:

𝑦̂𝑞 =
1
𝐾 

𝑠∈𝑁𝑘(𝑥𝑞)
𝑦𝑠

where𝑁𝑘(𝑥𝑞) is the set of indices for the 𝑘-nearest neighbors.

Decision Tree: A decision tree (DT), introduced by Breiman et al. (1984), is a non-parametric

model that recursively partitions the data space into subsets based on predictor values. Splits

are chosen to minimize a given criterion, such as variance in regression tasks. The result-

ing tree structure consists of internal nodes representing decision rules and terminal nodes

(leaves) representing subsets of the datawhere a simple predictionmodel, typically a constant

value, is applied.

In regression, a DT divides the predictor space into disjoint regions𝑅𝑚. The prediction for

a new observation in region𝑅𝑚 is given by a constant 𝑐𝑚, themean of the 𝑦-values within that

region:

𝑦̂𝑡 =
𝑀

𝑚=1

𝑐𝑚1(𝑥𝑡∈𝑅𝑚)

where𝑀 is the total number of regions.

Gradient Boosting, Extreme Gradient Boosting and Adaptive Boosting: Gradient boosting

(GBoosting) is an ensemble learning technique that builds a robust predictor by combining

multiple weak learners, typically DTs. Weak learners are trained sequentially, with each itera-

tion aiming to correct the errors of the previous one byminimizing a predefined loss function,
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such as least squares or least absolute deviation. The model is updated iteratively:

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥)+𝑣Δ𝑚(𝑥)

Here, 𝐹𝑚(𝑥) represents the model at iteration𝑚, 𝐹𝑚−1(𝑥) is the previous model, Δ𝑚(𝑥) is the

weak learner (a DT), and 𝑣 is the learning rate, a hyperparameter that controls the contribu-

tion of each learner. The learning rate 𝑣 serves as a shrinkage parameter,mitigating overfitting

by controlling the influence of each model update. Setting 𝑣 to a value less than 1 effectively

slows the learning process, improving generalization beyond the training data.

Extreme Gradient Boosting (XGBoost) is an advanced implementation of GBoosting that

incorporates optimizations to enhance performance and scalability (Chen and Guestrin

(2016)). Key features include L1 and L2 regularization to control model complexity, effi-

cient handling of missing data, parallelized tree construction, and early stopping, which halts

further iterations when no significant improvement is detected. These enhancements make

XGBoost suitable for large datasets, contributing to its widespread use in ML competitions

and practical applications.

Adaptive Boosting (AdaBoost), another popular boosting algorithm, differs from GBoost-

ing in its approach. Instead of fitting residuals, AdaBoost adjusts the weights of training

instances at each iteration, emphasizing observations poorly predicted by previous models

(Freund and Schapire (1997)). By increasing the influence of these “difficult” cases, AdaBoost

forces subsequent models to correct earlier mistakes, enhancing accuracy. However, Ad-

aBoost is sensitive to noise and outliers, which can be addressed through careful hyperparam-

eter tuning.

Bagging: Short for bootstrap aggregating, is an ensemble learning technique that improves

model robustness and accuracy by reducing variance and mitigating overfitting. It involves

training multiple models independently on unique bootstrap samples of the dataset. By ex-

posing each model to a distinct variation of the training data, bagging reduces dependency

on any single dataset and lowers the variance associated with individual models.
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After training, the predictions of allmodels are aggregated to produce a final output, lever-

aging the strengths of individual models while counteracting their errors. Bagging is particu-

larly effective for high-variance models, such as DTs, as it mitigates overfitting by ensuring

each model learns from different portions of the dataset. This results in an ensemble model

with improved predictive performance, particularly in scenarios where variability in individ-

ual models could compromise accuracy.

RandomForest: RandomForest (RF), introduced by Breiman (2001), is an ensemble learning

method that combines multiple DTs to create a robust and accurate predictive model. Build-

ing on the principles of bagging, RF introduces an additional layer of randomness by selecting

a random subset of predictors (features) at each split in the DTs. This random selection pre-

vents individual trees from overly relying on specific predictors and promotes diversity across

DTs.

The final RF prediction is obtained by averaging the predictions of all DTs, which reduces

the variance and improves generalization, making RF less prone to overfitting compared to a

single DT. Mathematically, the RF prediction for a regression task is:

𝑦̂𝑡 =
1
𝐾

𝐾

𝑘=1

𝑦̂𝑘(𝑥𝑡)

where 𝑦̂𝑘(𝑥) is the prediction from the𝑘-th tree and𝐾 is the total number of trees in the forest.

ArtificialNeuralNetwork: AMultilayer Perceptron (MLP) is a type of artificial neural network

designed to map a set of input features to a target output through multiple layers of nodes or

neurons. The network comprises an input layer, one or more hidden layers, and an output

layer. Each layer contains nodes representing weights and biases, which are adjusted during

training to optimize predictions.

The process begins with the input layer, where the raw data is fed into the network. These

inputs are then passed to the first hidden layer, where each node applies a linear combina-

tion of the input values using weights and biases, followed by a nonlinear activation function

(e.g., sigmoid, ReLU).This enables the network to capture complex patterns and relationships
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within the data. In deeper networks, additional hidden layers can be added, with each layer

building on the output of preceding layers, learning increasingly abstract data representa-

tions.

The output layer combines the learned features of the hidden layers to generate predic-

tions. The activation function used in the output layer depends on the task. For regression,

a linear activation is common, while classification tasks often employ a softmax function to

generate probabilities for different classes. Mathematically, the MLP is represented as:

𝑦̂ = 𝑓(𝑊2 ⋅ 𝑔(𝑊1 ⋅ 𝑥+𝑏1)+𝑏2)

where 𝑥 is the input vector, 𝑊1 and𝑊2 are weight matrices for the first and second layers, 𝑏1
and 𝑏2 are bias terms, 𝑔 is the activation function for the hidden layer (e.g., sigmoid, ReLU),

𝑓 is the activation function for the output layer (e.g., linear, softmax), and 𝑦̂ is the predicted

output.

The MLP is trained by adjusting weights 𝑊1, 𝑊2 and biases 𝑏1, 𝑏2 to minimize a chosen

loss function, such as mean squared error (MSE) for regression. This optimization is achieved

through backpropagation, which computes the gradient of the loss function with respect to

the network’s weights and biases, enabling iterative updates using methods like stochastic

gradient descent (SGD). See Rumelhart, Hinton and Williams (1986) for further details.

3.2 Data

The dataset comprises a diverse range of macroeconomic and financial market variables, pro-

viding a comprehensive foundation for nowcasting Peruvian GDP. These variables encom-

pass domestic activity indicators, such as electricity andoil production, cement consumption,

baby chicken placements, and goods supplied to wholesale markets; consumer and producer

price indices to reflect inflationary pressures; and surveys conducted by the Central Reserve

Bank of Peru (BCRP) capturing sentiment and expectations across sectors. Additionally, the

dataset incorporates domestic trade statistics and a variety of international macroeconomic
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variables, enabling the assessment of global influences on Peru’s economy. Domestic finan-

cial market variables, including asset prices, interest rates, and currency fluctuations, are also

included. Recognizing the vulnerability of specific sectors to natural phenomena, the dataset

further integrates climate data.

Following Tenorio and Perez (2023), we augment the dataset with unstructured data from

Google Trends, offering real-time insights into consumer behavior and economic sentiment.

Keywords such as “economy,” “visa,” “huaico,” and “Toyota”, among others (see Section B of

the Appendix).

The dataset spans April 2015 to August 2024, enabling the models to capture both short-

term fluctuations and long-term trends in economic activity, thereby providing a robust foun-

dation for nowcasting. Combining structured and unstructured data enhances the model’s

predictive power and adaptability to varying economic conditions.

3.3 Estimation Strategy

This section outlines the estimation strategy employed in this study. As emphasized by cite-

coulombe2021macroeconomic, the choice of data transformations significantly affects the ac-

curacy of ML methods.

To evaluate the performance ofML techniques for nowcasting PeruvianGDP, the study ex-

aminedvarious specifications. These includedusingvariables in year-on-year (YoY)ormonth-

on-month (MoM) percent changes (seasonally adjusted).¹ We also examined the use of ex-

panding versus rolling windows for the training sample.² Further, we compared K-Fold to

Walk-Forward cross-validation and assessed the appropriate lag structure. Feature matrix ro-

tations anddimensionality reduction techniqueswere treated as hyperparameters, optimized

during each nowcasting iteration.
¹Seasonal adjustment was performed using the TRAMO-SEATS algorithm in the RJDemetra package, applied

to both the features and the target variable when seasonality was detected. As the target variable is expressed in
YoY percent changes, forecasted factors were used to convert model predictions into this format.

²In the expanding window approach, the training set begins with an initial subset of observations, progres-
sively incorporating new data with each nowcast iteration. The rolling window approach maintains a fixed-size
training set, where the oldest data points are replaced with the most recent ones as time progresses.
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Additionally, we assessed a bottom-up approach, nowcasting the individual sectors com-

prising total and non-primary GDP and aggregating the results externally. The sectors in-

cluded services, commerce, primary industry, non-primary industry, and agriculture. Con-

struction,mining, andfishing sectorswere excluded fromnowcasting as their data is available

prior to the publication of total and non-primary GDP. For electricity, water, and gas distribu-

tion, we assumed electricity production growth, which accounts for approximately 80%of this

sector.

The diagram in Figure 1 illustrates the estimation strategy adopted for point prediction,

summarizing the methodology detailed below. This comprehensive approach ensures the de-

ployment of the most effective model configuration, enabling precise and robust GDP now-

casting while effectively capturing its inherent complexities.
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Figure 1: Estimation Strategy

Vintage dataset ML model

Final dataset

TPE

Best specification

fit model

fit model

RMSE in validation set

Prediction

dimensionality
reduction

feature
rotation

model
hyperparameters

Note: This procedure is employed to obtain point predictions using a given dataset
and anMLmodel. Feature rotations and the dimensionality reduction technique are
treated as hyperparameters and optimized alongside the ML model hyperparame-
ters within the Tree-Structured Parzen Estimator framework.

Data Preprocessing: The dataset used in the analysis is sampled on a monthly basis. Each

time series is individually evaluated to determine the optimal transformation for maximizing

its predictive relevance for GDP growth. First, series are seasonally adjusted³ to remove recur-
³Our analysis revealed that using seasonally adjusted variables yields better out-of-sample performance com-

pared to applying YoY percent change transformations.
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ring seasonal patterns that could introduce noise or distort the underlying trends relevant for

GDP nowcasting. Depending on the characteristics of each series, transformations include

converting to monthly percentage changes, taking first differences, or retaining the series in

its level form. These transformations are selected based on their ability to enhance the signal

related to GDP dynamics, ultimately improving model performance. To further optimize the

model, we evaluate (i) the appropriate lag structure and (ii) featurematrix rotations to identify

configurations that maximize predictive accuracy on the validation set. Given the temporal

nature of economic data, lagged predictor values often hold significant information about fu-

tureGDPbehavior,making the determination of an optimal lag structure critical for capturing

this temporal dependence. Moreover, Goulet Coulombe et al. (2021) demonstrate that certain

feature rotations can enhance predictive performance. In this study, we introduce eight lags

for each variable and allow the Tree-Structured Parzen Estimator to select the optimal feature

matrix rotations from the hyperparameter space detailed in Table 1:

Table 1: Rotations - Hyperparameter Search Space

Rotation Hyperparameter Prior Distribution
X Use {True,False}

MARX Use {True,False}
Order DiscreteUniform(3,6)

MAF Use {True,False}
N° Components DiscreteUniform(1,3)

Note: X represents features in levels, while MARX and MAF denote the moving average rotation of X and

moving average factors, respectively. See Goulet Coulombe et al. (2021) for further details.

COVID-19 Pandemic: To address the disruptions caused by the COVID-19 pandemic, we ex-

clude observations from March 2020 to December 2021, following the recommendations of

Schorfheide and Song (2021) and Lenza and Primiceri (2022). This exclusion is justified by the

significant economic volatility and structural breaks that occurred during this period, which

could distort model estimates and reduce predictive accuracy. Removing these observations

ensures more stable and reliable model performance. While alternative techniques for now-

casting during the pandemic (e.g., citeforonietal2022) were not evaluated, such approaches
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could be explored in future research to extend the test set.

Finally, all time series are standardized to ensure comparability across variables with dif-

ferent scales andunits, preventing predictorswith largermagnitudes fromdominating theML

algorithms.

DimensionalityReduction: Dimensionality reduction techniquesaddresshigh-dimensionality

and multicollinearity issues, enabling more robust model estimation. This step is potentially

important given the inclusion of feature matrix rotations, which may increase correlation

among variables.

We treat dimensionality reduction methods as hyperparameters to be optimized. Follow-

ing Ng (2013), we include Least Angle Regression (LARS) and Principal Component Analysis

(PCA) in the hyperparameter search space defined in Table 2:

Table 2: Dimensionality Reduction - Hyperparameter Search Space

Model Hyperparameter Prior Distribution
Dimensionality reduction Use {None, LARS, PCA}

LARS N° non-zero coefficients DiscreteUniform(30,150)
PCA N° Components Uniform(0.5,0.99)

The LARs regression algorithm is particularly effective when the number of predictors is

large relative to the number of observations. It constructs a parsimoniousmodel by iteratively

selecting variables basedon their correlationwith the response variable. At each step, LARs ad-

justs the estimated coefficients toward the least-squares solution. Unlike traditional stepwise

selection, it halts when a new predictor becomes as correlatedwith the residual as the current

predictor. This process continues until all predictors are incorporated or the model reaches a

predefined level of sparsity (see Efron et al. (2004) for further details). PCA is a widely used di-

mensionality reduction method that transforms a set of correlated variables into a smaller set

of uncorrelated variables called principal components. Each principal component is a linear

combination of the original variables and captures the maximum variance in the data, effec-

tively reducing the dimensionality of the datasetwhile preserving itsmost critical information.
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For a comprehensive mathematical treatment of PCA, see Jolliffe (2002).

Sample Split: We divided the dataset into training and test sets, experimenting with various

split configurations to identify the most appropriate setup. Ultimately, the training set covers

the period from April 2015 to February 2020, while the test set spans January 2022 to August

2024, deliberately excluding the pandemic period (March 2020 to December 2021), as previ-

ously noted. This approach ensures the model is trained on stable, pre-pandemic data and

evaluated on post-pandemic economic conditions, providing a more reliable measure of per-

formance unaffected by the unprecedented volatility during the COVID-19 pandemic.

CrossValidation: Tofine-tune themodel’shyperparameters,weconductedacross-validation

exercise using two methods: K-Fold and Walk-Forward cross-validation. Each method is

suited to specific data characteristics, particularly in the context of time-series predictions.

K-Fold cross-validation is a widely used technique that divides the training set into 𝐾
equal-sized subsets or “folds”. Themodel is trained on𝐾−1 folds and tested on the remaining

fold. This process is repeated 𝐾 times, with each fold serving as the validation test set once.

Theperformance is thenaveragedacross all𝐾 iterations toproducea robust estimateofmodel

accuracy. For 𝐾 = 5, the dataset is split into five parts (Figure 2). In each iteration, four parts

are used for training, while the remaining part is used for validation. This ensures all observa-

tions are used for both training and validation, providing a comprehensive assessment of the

model’s generalization ability.
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Figure 2: K-Fold Cross-Validation (5 folds)
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Walk-Forward cross-validation, also known as time-series cross-validation, is designed

specifically for time-series data, where the temporal order of observations must be preserved.

In this method, the training set starts with a small subset of data and grows sequentially as

more data becomes available. After each training iteration, the model is validated using the

next time period. This iterative process mimics real-world nowcasting, where models are

trained on past data to predict future outcomes. However, walk-forward cross-validation is

less efficient in terms of data usage, as each iteration uses only a portion of the dataset for

training and another portion for validation. This can lead to higher variance in performance

estimates, particularly in early iterations when the training set is smaller.

Figure 3: Walk Forward Cross Validation (5 folds)
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In our analysis, we found that 5-Fold cross-validation outperformed Walk-Forward cross-

validation, consistent with the findings of Goulet Coulombe et al. (2022). The K-Fold method

provided more stable and reliable results for hyperparameter tuning, likely because it fully

utilizes the data in a balanced manner and is less sensitive to the temporal dependencies that

Walk-Forward cross-validation seeks to preserve.

Hyperparameter Optimization: We explored two widely used techniques for hyperparame-

ter optimization: Grid Search and the Tree-Structured Parzen Estimator. These methods play

a critical role in enhancing model performance by identifying the most effective hyperparam-

eter configurations.

Grid Search systematically evaluates all possible combinations of hyperparameterswithin

a predefined range of values. For each hyperparameter, a set of candidate values is specified,

and thealgorithmtests everypossible combination, trainingandvalidating themodel for each

case. WhileGrid Search guarantees that the best combinationwithin the defined grid is found,

it can be computationally expensive, particularly when the number of hyperparameters and

their respective value ranges is large.

The Tree-Structured Parzen Estimator (TPE) is a Bayesian optimization technique that

leverages probabilistic models to guide the search for optimal hyperparameters. Unlike Grid

Search, which explores the hyperparameter space without incorporating prior results, TPE

constructs a probabilistic model of the objective function based on past evaluations. This

model is then used to predict the most promising regions of the hyperparameter space to ex-

plore next, enabling a more targeted and efficient search.

TPE is particularly advantageous for complexmodels, such as deep learning architectures

(see Watanabe (2023) for further details), where the hyperparameter space is vast and non-

linear. By focusing on the most promising regions, TPE significantly reduces the number of

evaluations required to identify the optimal configuration. Thismakes it especially effective in

scenarios involving complex and non-intuitive hyperparameter interactions. For each model,

let h represent the set of hyperparameters and 𝑠 denote the corresponding objective function

values. TPE operates through the following steps:
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1. Given an initial number of evaluations (𝑁 𝑖𝑛𝑖𝑡) of an objective function, define 𝐷 ∶=
{(h𝑛, 𝑠𝑛)}𝑁

𝑖𝑛𝑖𝑡
𝑛=1 as the set containing all pairs of hyperparameter configurations and their

corresponding objective function values..

2. Divide set 𝐷 in two subsets: a ”good” group (𝐷𝑙) and a ”bad” group (𝐷𝑔), based on a

quantile 𝑠𝛾,𝛾 ∈ [0,1).

3. Construct probability density functions (PDFs) 𝑝(h|𝐷𝑙),𝑝(h|𝐷𝑔) using a prior distribu-

tion for each hyperparameter and kernel density estimators (KDEs).

4. Sample from the PDF of the ”good” group: 𝑆 ∶= {h𝑖}𝑁𝑖
𝑖=1 ∈ 𝑝(h|𝐷𝑙).

5. Optimize a surrogate function to identify the best candidate for evaluating the objective

function:

h∗N+1 = argmax
h∈𝑆

𝑟(h|𝐷)

𝑟(h|𝐷) = 𝑝(h|𝐷𝑙)/𝑝(h|𝐷𝑔)

6. Evaluate the objective function at the optimal candidate: s∗N+1 = 𝑓(h∗N+1)

7. Update set𝐷←𝐷∪{(h∗N+1,s∗N+1)}.

8. Repeat steps 1–7 until the maximum number of objective function evaluations is

reached.

9. Select the hyperparameter configuration that optimizes the objective function.

After assessing theperformanceandefficiencyof all threemethods,we selectedTPEasour

preferred technique for hyperparameter optimization. Its iterative refinement based on previ-

ous results significantly enhances efficiency compared to Grid Search, especially for complex

models. The search space for hyperparameters across models is detailed in Table 3:
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Table 3: ML Models - Hyperparameter Search Space

Model Hyperparameter Prior Distribution
Lasso Alpha Uniform(10−3,3∗10−1)
Ridge Alpha Uniform(10−1,102)

Elastic Net
Alpha Uniform(10−3,3∗10−1)

L1 ratio Uniform(10−4,1)
SVR

Gamma Uniform(10−7,0.5)
C Uniform(1,105)

Decision Tree

Max. Depth Discrete Uniform(3,100)
Min. samples for leaf DiscreteUniform(1,20)
Min. samples for split DiscreteUniform(2,20)

Max. leaf nodes DiscreteUniform(5,20)

KNN
N Neighbors DiscreteUniform(2,30)

Weights {uniform,distance}

Random Forest

Max. Depth DiscreteUniform(3,100)
Min. samples for leaf DiscreteUniform(4,10)
Min. samples for split DiscreteUniform(4,10)

N. Estimators DiscreteUniform(30,200)

AdaBoost
Learning Rate Uniform(10−4,1)

Loss {linear,squared,exponential}
N. Estimators DiscreteUniform(30,200)

GBoost

Learning Rate Uniform(10−4,1)
Max. Depth DiscreteUniform(3,100)

Min. samples for leaf DiscreteUniform(4,10)
Min. samples for split DiscreteUniform(4,10)

N. Estimators DiscreteUniform(30,200)

XGBoost

Columns per tree Uniform(10−2,0.99)
Gamma Uniform(10−3,0.99)

Learning Rate Uniform(10−4,1)
Subsample Uniform(0.5,0.99)
Max. Depth DiscreteUniform(3,100)

N. Estimators DiscreteUniform(30,200)

Bagging

N. Estimators DiscreteUniform(5,20)
Max. Samples Uniform(10−2,1)
Max. Features Uniform(3∗10−2,1)

Bootstrap {True,False}
Bootstrap Features {True,False}

MLP

N. Layers DiscreteUniform(1,7)
Neurons per layer DiscreteUniform(1,15)

Activation {Identity, Logistic, Tanh, ReLU}
Alpha Uniform(10−8,0.99)

Batch size DiscreteUniform(10,20)
Beta 1 Uniform(10−2,0.99)
Beta 2 Uniform(10−2,0.99)
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Model Evaluation: Following established practices in GDP nowcasting literature, we assess

model performance using the RootMean Square Error (RMSE), awidely recognizedmetric for

evaluating prediction accuracy. RMSE directly measures the average magnitude of prediction

errors, with larger errors penalized more heavily, making it a robust tool for model compari-

son.

For a given model 𝑚, the RMSE is computed as the square root of the mean of squared

differences between actual values 𝑦𝑡 and the predicted values 𝑦̂𝑡:

𝑅𝑀𝑆𝐸𝑚 =

⎷

1
32

𝑇


𝑡=𝑇−32
(𝑦𝑡 −𝑦̂𝑚𝑡 )2

where𝑦𝑡 denotes actual GDP values at time 𝑡, 𝑦̂𝑚𝑡 is the nowcast generated bymodel𝑚 at time

𝑡, 𝑇 corresponds to August 2024, and the 32-observation window refers to the test period (the

last 32 months).

4 Results

To evaluate and compare the performance of various ML methods, we conducted an out-of-

sample nowcasting exercise from January 2022 to August 2024. Four analyseswere performed:

one for each target variable (total and non-primary GDP) and for each approach (direct and

bottom-up).

Tables 4 and 5 present point nowcasts for YoY total GDP growth using the bottom-up

and direct approaches, respectively. The first column lists actual GDP values, while subse-

quent columnsdisplaypredictions for eachMLmodel, themeanprediction acrossMLmodels

(Mean ML), and the DFM benchmark.

From Table 4, all ML models achieved lower RMSE values than the DFM. Models such as

XGBoost and Elastic Net consistently performed well, with RMSE values around 0.6, showcas-

ing their ability to capture non-linear patterns in GDP data.

Comparing tables 4 and 5, the bottom-up approach yielded lower RMSE values across

all ML models. By assembling sectorial nowcasts, this approach captured episodes of high
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volatility more precisely. For example, in Q2 2024, agriculture and fisheries experienced a sig-

nificant rebound, which the direct approach failed to capture. This suggests that identifying

sector-specific movements may be easier than forecasting total GDP, an aggregate of all sec-

tors.

Table 4: Nowcast of YoY GDP (bottom-up)

GDP Lasso Ridge Elastic Net SVR DT KNN RF AdaBoost GBoost XGBoost Bagging MLP Mean ML DFM
Jan-22 2.8 4.2 4.0 4.0 4.0 3.2 4.1 3.9 3.6 3.4 3.5 3.4 4.3 3.8 4.0
Feb-22 4.7 5.4 5.5 5.6 5.6 5.1 5.2 5.3 5.3 5.2 5.2 5.2 5.8 5.4 5.9
Mar-22 3.8 3.9 4.2 4.1 4.4 3.7 3.8 3.5 3.6 3.5 3.7 3.6 4.3 3.9 4.0
Apr-22 4.0 3.6 3.3 3.6 3.6 3.3 3.8 3.5 3.5 3.3 3.6 3.6 3.4 3.5 4.3
May-22 2.6 2.5 2.6 2.6 2.2 2.0 2.1 2.4 2.5 2.6 2.2 2.1 2.4 2.3 1.7
Jun-22 3.5 2.9 3.0 3.1 2.9 3.6 3.2 3.4 3.4 3.6 3.4 3.6 3.2 3.3 3.6
Jul-22 1.8 2.6 2.4 2.4 2.4 3.1 2.4 2.6 2.6 2.7 2.5 2.6 2.4 2.6 2.8
Aug-22 2.0 1.8 2.0 1.8 1.8 2.0 1.7 2.0 1.9 1.9 2.2 1.9 1.9 1.9 1.9
Sep-22 2.1 1.5 1.7 1.6 1.3 1.5 1.6 1.6 1.5 1.6 1.7 1.5 1.7 1.6 1.7
Oct-22 2.3 3.1 2.9 3.0 3.1 3.0 3.3 2.9 3.0 2.8 2.8 2.9 3.0 3.0 3.5
Nov-22 2.1 2.6 2.6 2.7 2.6 2.1 2.4 2.8 2.4 2.4 2.5 2.4 2.7 2.5 2.7
Dec-22 1.0 2.1 2.4 2.1 2.3 3.1 2.4 2.2 2.2 2.2 2.5 2.5 2.4 2.4 1.8
Jan-23 -0.9 0.1 0.3 0.3 0.5 0.7 0.5 0.4 0.5 0.5 0.5 0.5 0.2 0.4 0.4
Feb-23 -0.6 -0.9 -1.0 -1.0 -1.0 -0.9 -0.7 -0.7 -0.9 -1.1 -1.0 -1.1 -0.9 -0.9 -1.0
Mar-23 0.3 0.5 0.1 0.3 -0.1 0.2 0.6 0.4 0.3 0.4 0.2 0.4 -0.4 0.2 -0.2
Apr-23 0.4 0.6 0.8 0.5 0.8 0.6 1.1 1.2 0.9 0.7 0.7 0.9 0.5 0.8 1.1
May-23 -1.3 -0.9 -1.0 -1.1 -1.1 -0.5 -0.2 -0.4 -0.5 -0.7 -0.7 -0.7 -1.1 -0.7 -0.9
Jun-23 -0.6 -0.5 -0.3 -0.5 -0.1 -0.8 -0.7 -0.7 -1.0 -1.0 -0.8 -0.8 -0.2 -0.6 -1.5
Jul-23 -1.2 -0.2 -0.5 -0.4 -0.1 -0.1 -0.2 -0.3 -0.3 -0.1 -0.2 0.1 -0.3 -0.2 -0.4
Aug-23 -0.4 -0.8 -0.8 -0.6 -0.9 -0.5 -1.1 -1.0 -0.5 -0.6 -0.7 -0.2 -0.8 -0.7 -1.2
Sep-23 -1.2 -1.0 -1.1 -1.0 -1.1 -0.7 -0.8 -0.8 -0.9 -0.8 -0.8 -0.7 -1.2 -0.9 -0.3
Oct-23 -0.7 -0.3 -0.4 -0.4 -0.5 -0.6 -0.7 -0.6 -0.4 -0.8 -0.5 -0.5 -0.4 -0.5 -0.4
Nov-23 0.3 -0.5 -0.4 -0.5 -0.6 -0.4 -0.2 -0.2 -0.2 -0.2 -0.3 -0.1 -0.5 -0.3 0.4
Dec-23 -0.7 -0.9 -0.9 -0.9 -0.8 -1.5 -0.6 -0.6 -0.9 -1.3 -0.9 -1.1 -1.0 -0.9 -0.5
Jan-24 1.5 1.3 1.2 1.4 1.3 1.3 1.0 1.0 1.1 1.3 1.4 0.8 1.3 1.2 0.8
Feb-24 3.2 3.3 3.1 3.1 3.4 2.9 3.3 3.3 3.0 3.2 3.1 3.0 3.2 3.2 3.6
Mar-24 -0.4 -0.7 -0.4 -0.5 -0.7 -1.0 -0.9 -0.7 -0.7 -0.5 -0.6 -0.6 -0.6 -0.7 -0.7
Apr-24 5.4 4.6 4.2 4.4 4.5 4.9 3.5 3.8 4.7 4.8 4.6 4.4 4.3 4.4 3.4
May-24 5.3 5.1 5.0 5.1 5.3 5.6 6.1 5.8 5.4 5.3 5.4 5.4 5.0 5.4 6.2
Jun-24 0.3 1.4 1.4 1.6 1.5 1.4 2.0 1.7 0.9 1.0 1.0 1.0 1.4 1.4 1.8
Jul-24 4.6 3.4 3.4 3.4 3.8 3.2 3.5 3.4 3.5 3.4 3.3 3.5 3.7 3.5 3.7
Aug-24 3.7 3.4 3.6 3.4 3.6 3.4 3.4 3.5 3.5 3.7 3.4 3.4 3.5 3.5 2.9
RMSE 0.637 0.643 0.629 0.682 0.740 0.804 0.720 0.588 0.586 0.608 0.631 0.673 0.628 0.840
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Table 5: Nowcast of YoY GDP (direct)

GDP Lasso Ridge Elastic Net SVR DT KNN RF AdaBoost GBoost XGBoost Bagging MLP Mean ML DFM
Jan-22 2.8 2.9 2.8 2.9 2.8 3.2 2.3 2.4 2.3 2.6 2.8 2.6 2.5 2.7 3.6
Feb-22 4.7 3.0 3.1 3.1 3.9 3.4 3.6 3.4 3.6 3.4 3.6 3.3 3.2 3.4 4.6
Mar-22 3.8 5.0 5.3 4.4 4.9 4.9 4.7 4.3 4.3 4.1 4.3 4.4 5.2 4.6 3.9
Apr-22 4.0 3.8 4.1 4.4 4.1 3.2 4.0 4.0 4.2 3.6 4.2 4.2 4.2 4.0 5.2
May-22 2.6 3.4 3.2 3.4 3.2 3.8 2.6 3.3 3.1 3.8 3.0 3.5 3.3 3.3 2.0
Jun-22 3.5 2.7 2.6 2.6 2.7 2.3 2.5 2.5 2.7 3.0 2.5 2.4 2.6 2.6 3.6
Jul-22 1.8 3.1 3.1 3.0 2.9 3.2 2.9 3.3 3.7 3.7 2.8 3.5 3.0 3.2 4.0
Aug-22 2.0 1.9 1.9 1.6 2.1 2.3 2.5 1.9 2.2 2.3 1.5 1.6 1.7 2.0 1.1
Sep-22 2.1 1.1 1.1 1.1 1.2 1.9 1.5 1.2 1.5 0.7 1.2 1.0 0.9 1.2 1.1
Oct-22 2.3 2.4 2.3 2.3 2.6 2.0 2.4 2.6 2.7 2.7 2.7 2.4 2.3 2.4 3.7
Nov-22 2.1 2.0 2.5 2.5 2.3 2.7 3.1 2.6 2.4 2.6 2.1 2.7 2.6 2.5 2.7
Dec-22 1.0 2.0 1.9 2.0 2.3 2.1 1.8 1.8 2.0 2.4 2.0 1.9 1.9 2.0 1.0
Jan-23 -0.9 0.5 0.5 0.4 0.5 1.2 1.1 1.6 1.5 1.0 1.5 2.0 0.7 1.1 2.4
Feb-23 -0.6 -2.4 -2.0 -2.3 -1.7 -1.3 -1.7 -1.1 -1.2 -1.8 -0.8 -0.9 -2.4 -1.6 -1.3
Mar-23 0.3 -0.1 1.1 0.1 0.1 0.0 -0.7 0.3 0.2 0.3 0.0 0.4 -0.1 0.1 -1.3
Apr-23 0.4 -0.1 -0.3 -0.3 -0.1 0.1 0.7 0.1 0.1 -0.6 0.0 -0.2 -0.2 -0.1 -0.1
May-23 -1.3 0.3 0.2 0.1 0.2 0.9 0.5 0.7 0.6 0.4 0.5 0.8 0.3 0.4 0.2
Jun-23 -0.6 -1.6 -1.7 -1.6 -1.6 -0.9 -1.2 -1.3 -1.2 -1.0 -1.3 -1.3 -1.7 -1.4 -1.5
Jul-23 -1.2 -0.1 -0.1 -0.2 -0.3 0.3 -0.4 -0.3 -0.5 -0.7 -0.5 -0.7 -0.3 -0.3 1.4
Aug-23 -0.4 -0.7 -0.4 -0.5 -0.4 -0.1 -0.6 -0.8 -0.8 -0.5 -0.7 -1.0 -0.3 -0.6 -1.5
Sep-23 -1.2 -1.3 -0.8 -0.6 -0.7 -1.0 -0.9 -0.6 -0.6 -0.5 -1.0 -0.5 -0.7 -0.8 -0.4
Oct-23 -0.7 -0.8 -0.9 -0.9 -0.7 -0.5 -0.2 -0.4 -0.8 -0.8 -0.6 -0.3 -0.7 -0.6 -0.8
Nov-23 0.3 -0.9 -1.0 -0.9 -0.9 -0.6 -0.8 -0.7 -0.8 -0.5 -0.7 -0.7 -0.9 -0.8 -0.1
Dec-23 -0.7 0.5 0.5 0.3 0.6 0.7 0.5 0.3 0.5 0.5 0.5 0.1 0.3 0.4 -0.8
Jan-24 1.5 1.8 2.0 2.0 1.4 1.3 1.6 1.0 1.0 0.8 0.8 1.1 2.0 1.4 1.3
Feb-24 3.2 2.5 2.5 2.6 2.3 1.3 2.3 1.9 2.3 1.6 2.0 1.9 2.3 2.1 3.3
Mar-24 -0.4 -1.0 -1.1 -0.8 -1.0 -0.3 -0.2 -0.3 -1.0 -1.2 -0.2 -0.3 -0.7 -0.7 0.1
Apr-24 5.4 3.2 3.3 3.3 3.0 3.0 2.8 2.7 2.7 3.2 3.0 2.9 3.4 3.1 2.8
May-24 5.3 3.2 3.1 3.1 3.2 4.6 3.4 4.1 3.9 3.4 3.7 4.2 3.2 3.6 4.9
Jun-24 0.3 2.4 2.4 2.7 2.0 2.9 3.9 3.0 3.1 3.0 3.5 3.0 2.7 2.9 2.6
Jul-24 4.6 3.2 3.2 3.1 2.9 2.9 2.9 2.9 2.7 3.2 2.9 2.9 3.1 3.0 4.4
Aug-24 3.7 3.3 3.0 3.1 3.6 2.2 3.5 3.2 3.1 3.1 3.2 3.0 3.1 3.1 3.0
RMSE 1.107 1.105 1.099 1.039 1.207 1.208 1.156 1.163 1.173 1.148 1.202 1.128 1.101 1.245

Tables 6 and 7 provide monthly nowcasts of YoY non-primary GDP growth for the bottom-

up and direct approaches, respectively. Non-primary GDP is particularly significant due to

the relative lack of real-time information, making accurate nowcasts critical for policymakers

and analysts.

ML models demonstrated strong performance in capturing non-primary GDP move-

ments during economic downturns (e.g., H2 2023) and periods of volatility (e.g., H1 2024),

with RMSE values around 0.7–0.8. Notably, the DFM performed comparably, achieving an

RMSE of 0.7.

However, ML models struggled to capture the rapid slowdown in January 2023 caused by

social conflicts. Although the bottom-up approach mitigated errors to some extent, the DFM

provided superior predictions for this period, accurately reflecting non-primary GDP dynam-

ics.
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Table 6: Nowcast of YoY Non-Primary GDP (bottom-up)

GDP Lasso Ridge Elastic Net SVR DT KNN RF AdaBoost GBoost XGBoost Bagging MLP Mean ML DFM
Jan-22 2.9 4.1 4.0 4.0 4.0 3.9 4.1 4.1 3.9 3.9 4.0 4.0 4.0 4.0 3.9
Feb-22 6.1 6.5 6.4 6.6 6.6 6.2 6.4 6.4 6.4 6.3 6.5 6.2 6.5 6.4 7.1
Mar-22 5.3 4.9 5.1 5.3 5.0 4.8 4.7 4.8 4.8 4.8 4.8 4.8 5.1 4.9 5.3
Apr-22 5.1 4.7 4.4 4.5 4.6 4.5 4.4 4.6 4.5 4.6 4.8 4.8 4.5 4.6 4.9
May-22 4.4 4.6 4.5 4.5 4.4 4.2 4.4 4.5 4.6 4.7 4.5 4.4 4.5 4.5 4.3
Jun-22 3.7 3.6 3.7 3.8 3.9 4.0 3.9 4.0 3.9 4.0 4.1 4.1 3.9 3.9 4.0
Jul-22 2.1 3.2 3.2 3.1 3.1 3.4 3.0 3.1 3.1 3.1 3.0 3.0 3.2 3.1 2.9
Aug-22 2.8 2.3 2.4 2.4 2.4 2.7 2.4 2.6 2.5 2.4 2.6 2.6 2.3 2.5 2.6
Sep-22 2.7 2.0 2.1 2.1 2.0 1.7 2.0 2.0 2.0 2.0 2.2 1.8 2.1 2.0 2.0
Oct-22 2.1 3.1 3.0 2.9 3.0 2.8 3.1 2.9 2.8 2.6 2.7 2.8 2.9 2.9 2.8
Nov-22 2.1 2.5 2.5 2.5 2.4 2.5 2.3 2.5 2.4 2.5 2.3 2.5 2.4 2.4 2.3
Dec-22 -0.2 1.3 1.3 1.3 1.4 1.4 1.6 1.4 1.3 1.3 1.5 1.3 1.5 1.4 1.3
Jan-23 -1.9 -0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.2 -0.2 0.0 0.0 -0.7
Feb-23 -1.6 -1.8 -1.9 -2.0 -1.9 -1.8 -1.9 -1.8 -1.8 -2.0 -2.0 -2.1 -1.8 -1.9 -2.2
Mar-23 -1.9 -2.3 -2.3 -2.3 -2.2 -2.1 -2.0 -2.0 -2.1 -2.0 -2.0 -1.9 -2.4 -2.1 -2.3
Apr-23 -1.1 -1.9 -1.7 -1.8 -1.9 -1.5 -1.7 -1.6 -1.8 -1.9 -1.8 -1.5 -1.9 -1.8 -1.8
May-23 -1.4 -1.2 -1.2 -1.2 -1.4 -1.2 -1.1 -1.1 -1.1 -1.3 -1.1 -1.0 -1.2 -1.2 -1.1
Jun-23 -0.7 -1.3 -1.3 -1.3 -1.3 -1.2 -1.1 -1.3 -1.3 -1.4 -1.4 -1.2 -1.3 -1.3 -1.2
Jul-23 -2.0 -0.5 -0.6 -0.6 -0.2 -0.8 -0.6 -0.6 -0.5 -0.7 -0.5 -0.4 -0.6 -0.5 -0.6
Aug-23 -1.8 -2.0 -2.0 -1.8 -2.1 -1.9 -1.6 -1.8 -1.9 -1.9 -1.9 -1.7 -2.0 -1.9 -1.8
Sep-23 -2.5 -2.7 -2.7 -2.6 -2.6 -2.4 -2.4 -2.4 -2.4 -2.4 -2.3 -2.2 -2.7 -2.5 -2.1
Oct-23 -1.5 -1.3 -1.0 -1.2 -1.3 -1.5 -1.2 -1.3 -1.4 -1.5 -1.3 -1.4 -1.2 -1.3 -1.1
Nov-23 -1.6 -1.5 -1.5 -1.5 -1.6 -1.9 -1.5 -1.5 -1.5 -1.6 -1.6 -1.5 -1.6 -1.6 -1.0
Dec-23 0.3 -1.0 -1.0 -1.0 -0.9 -1.0 -0.8 -0.8 -0.8 -0.8 -0.7 -0.8 -1.0 -0.9 -0.2
Jan-24 2.3 2.2 2.2 2.3 2.4 2.5 2.2 2.1 2.1 2.4 2.4 2.1 2.2 2.3 1.9
Feb-24 2.7 2.2 2.2 2.2 2.1 2.0 2.3 2.2 2.1 2.2 2.2 2.1 2.2 2.2 2.5
Mar-24 -0.3 -0.7 -0.6 -0.6 -0.6 -0.7 -0.6 -0.6 -0.6 -0.5 -0.6 -0.5 -0.6 -0.6 -0.6
Apr-24 3.9 3.9 3.8 3.9 3.9 3.7 3.6 3.6 3.8 3.8 3.6 3.8 3.8 3.8 3.8
May-24 2.5 2.3 2.3 2.3 2.6 2.5 2.4 2.5 2.3 2.4 2.3 2.4 2.4 2.4 3.1
Jun-24 1.1 1.4 1.2 1.3 1.2 1.2 1.1 1.0 1.0 1.0 1.1 1.0 1.2 1.1 1.2
Jul-24 5.1 3.7 3.7 3.8 4.0 3.8 3.8 3.8 3.8 3.7 3.9 3.9 4.0 3.8 3.8
Aug-24 3.6 3.2 3.1 3.2 3.1 3.4 3.4 3.3 3.4 3.3 3.2 3.3 3.2 3.2 3.0
RMSE 0.766 0.742 0.737 0.754 0.744 0.746 0.731 0.728 0.721 0.732 0.695 0.738 0.727 0.672
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Table 7: Nowcast of YoY Non-Primary GDP (direct)

GDP Lasso Ridge Elastic Net SVR DT KNN RF AdaBoost GBoost XGBoost Bagging MLP Mean ML DFM
Jan-22 2.9 2.9 2.9 2.9 2.9 3.0 3.0 3.1 3.1 2.9 3.1 3.1 2.9 3.0 2.8
Feb-22 6.1 6.5 6.4 6.4 6.6 6.7 6.8 6.9 6.9 6.8 6.6 7.0 6.4 6.7 7.1
Mar-22 5.3 5.3 5.5 5.4 5.5 5.7 5.6 5.5 5.6 5.7 5.5 5.7 5.7 5.6 5.6
Apr-22 5.1 4.3 4.3 4.3 4.4 4.6 4.7 4.6 4.6 4.6 4.6 4.7 4.3 4.5 5.4
May-22 4.4 5.1 5.1 4.9 4.9 5.1 4.8 5.0 5.0 5.2 5.0 5.0 5.1 5.0 4.3
Jun-22 3.7 4.0 4.1 3.9 3.9 4.3 4.2 4.2 4.3 4.2 4.1 4.1 3.9 4.1 4.1
Jul-22 2.1 2.9 3.1 3.3 2.9 3.5 3.3 3.5 3.2 3.5 3.5 3.4 3.1 3.3 3.0
Aug-22 2.8 2.3 2.2 2.3 2.1 2.4 2.5 2.5 2.3 2.4 2.3 2.5 2.2 2.3 2.3
Sep-22 2.7 1.9 1.9 1.8 1.9 2.1 1.9 1.9 1.9 2.0 2.0 1.9 1.9 1.9 1.9
Oct-22 2.1 3.0 2.9 2.9 2.9 2.9 2.8 2.7 2.7 2.5 2.7 2.8 2.9 2.8 2.6
Nov-22 2.1 2.2 2.1 2.0 2.2 1.9 1.9 2.0 2.1 1.8 2.0 2.1 2.1 2.1 1.6
Dec-22 -0.2 1.1 1.1 1.2 1.1 1.5 1.5 1.3 1.2 1.3 1.4 1.3 1.1 1.3 0.5
Jan-23 -1.9 0.5 0.5 0.7 0.7 1.0 0.8 0.9 1.0 0.8 0.9 0.9 0.6 0.8 0.3
Feb-23 -1.6 -1.3 -1.4 -1.4 -1.3 -1.3 -1.6 -1.6 -1.6 -1.5 -1.8 -1.6 -1.3 -1.5 -2.2
Mar-23 -1.9 -1.6 -1.7 -1.6 -1.6 -0.7 -1.4 -1.4 -1.4 -1.4 -1.2 -1.3 -1.6 -1.4 -2.2
Apr-23 -1.1 -2.2 -2.2 -2.3 -2.3 -2.3 -2.3 -2.2 -2.1 -2.2 -2.3 -2.2 -2.2 -2.2 -2.2
May-23 -1.4 -0.2 -0.6 -0.4 0.0 -0.1 -0.4 -0.2 -0.2 -0.4 -0.3 -0.2 -0.6 -0.3 -0.4
Jun-23 -0.7 -1.5 -1.4 -1.5 -1.4 -1.4 -1.3 -1.4 -1.4 -1.4 -1.5 -1.4 -1.5 -1.4 -1.5
Jul-23 -2.0 -0.1 0.0 -0.2 -0.4 -0.7 -0.3 -0.7 -0.8 -0.8 -0.7 -0.9 0.0 -0.5 -0.3
Aug-23 -1.8 -1.6 -1.7 -1.6 -1.6 -0.9 -1.5 -1.6 -1.6 -1.5 -1.5 -1.5 -1.6 -1.5 -1.9
Sep-23 -2.5 -2.1 -2.2 -2.1 -2.1 -1.6 -2.0 -2.0 -2.1 -2.0 -2.1 -2.1 -2.1 -2.1 -1.8
Oct-23 -1.5 -1.6 -1.5 -1.5 -1.4 -1.6 -1.5 -1.5 -1.4 -1.5 -1.4 -1.6 -1.5 -1.5 -1.2
Nov-23 -1.6 -1.9 -1.9 -1.9 -1.9 -1.3 -1.8 -1.7 -1.7 -1.7 -1.7 -1.6 -1.8 -1.7 -1.1
Dec-23 0.3 -1.5 -1.6 -1.6 -1.6 -1.5 -1.4 -1.4 -1.5 -1.4 -1.5 -1.5 -1.6 -1.5 -1.0
Jan-24 2.3 2.4 2.3 2.6 2.0 1.2 2.0 1.6 1.5 1.7 1.8 1.6 2.4 1.9 1.3
Feb-24 2.7 2.3 2.3 2.3 2.2 2.0 2.5 2.2 2.3 2.2 2.0 2.1 2.3 2.2 2.5
Mar-24 -0.3 -0.3 -0.3 -0.3 -0.1 -0.2 -0.1 0.0 -0.1 -0.2 -0.2 -0.1 -0.3 -0.2 0.1
Apr-24 3.9 3.3 3.3 3.3 3.5 3.5 3.4 3.5 3.4 3.4 3.5 3.6 3.3 3.4 3.6
May-24 2.5 2.1 2.0 2.0 1.9 2.6 2.0 2.1 1.9 1.6 1.8 2.1 2.3 2.0 3.0
Jun-24 1.1 1.6 1.4 1.5 1.5 1.1 1.5 1.4 1.4 1.3 1.4 1.3 1.4 1.4 1.6
Jul-24 5.1 3.0 3.1 3.1 3.2 3.0 3.1 3.0 3.0 3.2 3.1 3.1 3.1 3.1 3.4
Aug-24 3.6 3.6 3.5 3.3 3.4 3.0 3.3 3.4 3.4 3.6 3.4 3.4 3.5 3.4 2.9
RMSE 0.916 0.909 0.933 0.924 1.021 0.938 0.943 0.944 0.912 0.949 0.926 0.915 0.921 0.841

Interesting patterns emerged regarding hyperparameter choices. Dimensionality reduc-

tion techniques were predominantly selected by TPE across target variables and ML models.

Notably, LARS consistently outperformed PCA for all ML models, except for Decision Tree,

whichoccasionally performedbetterwithPCA. Featurematrix rotations showedmixed results.

While TPE tended to favor MARX over MAF or X for most out-of-sample nowcasts, this prefer-

ence was less pronounced compared to LARS dominance in dimensionality reduction. LARS

was chosen 95.6% of the time (2,570 out of 2,688 cases), compared to 69.9% for MARX. Table

8 presents the relative frequency of hyperparameter usage in the out-of-sample exercises:

Table 8: Hyperparameters - Frequency of usage in Out-of-Sample exercises
(Percentage points)

Dimensionality reduction Rotations
LARS PCA None MARX MAF X
95.6 4.1 0.3 69.9 51.5 45.0
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5 Conclusion

This paper applied ML techniques to nowcast total and non-primary Peruvian GDP. By test-

ing a wide range of model specifications, we compared the accuracy of ML methods against

the DFM, a standard benchmark for nowcasting. Our findings demonstrate that ML models

performed well, achieving lower RMSE values than the DFM for total GDP and comparable

RMSE values for non-primary GDP.

A key contribution of this study is the implementation of a bottom-up approach for

nowcasting, which involved nowcasting disaggregated sectoral components of total and non-

primary GDP. This approach reduced RMSE by approximately 45% and 22% for total and

non-primary GDP, respectively. Additionally, we explored the value of incorporating new

features and reducing the dimensionality of the feature matrix to enhance predictability. The

inclusion of moving averages of features and the use of LARS for dimensionality reduction

were the most frequently effective procedures.

An important avenue for future research involves expanding the focus from nowcasting

to forecasting. While nowcasting assesses the current state of the economy, incorporating

forecasting could provide valuable insights into future economic trends, further enhancing

the utility of ML techniques for economic decision-making.

Besides, we plan to address the interpretability of ML models, often criticized due to their

algorithmic complexity. Techniques such as SHAP (Shapley Additive Explanations) and LIME

(Local Interpretable Model-Agnostic Explanations) could make ML results more transparent,

boosting their reliability and acceptance among policymakers and economists, who often re-

quire a clear understanding of the drivers behind predictions.

In conclusion, while ML techniques have proven highly effective in nowcasting Peruvian

GDP, there are significant opportunities to expand and refine their application. By extending

into forecasting and enhancing interpretability, future research can further advance the role

of ML in economic prediction.
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A Dynamic Factor Model for Nowcasting Monthly GDP in

Peru

Themethodology in this paper follows the theoretical framework established byBańbura et al.

(2013) and Mariano and Murasawa (2010), with a modified implementation in Python based

on Fulton (2020). The DFM assumes that a small number of unobservable factors can explain

a significant portion of the variation and dynamics of a large set of observable variables. These

observable variables often comprisedozensor evenhundredsof series,making the estimation

of dynamic factors an effective dimensionality reduction technique. The estimated factors are

then utilized for forecasting and nowcasting. The model is specified as follows:

𝑧𝑡 =Λ𝑓𝑡 +𝜖𝑡

𝑓𝑡 =𝐴1𝑓𝑡−1+...+𝐴𝑝𝑓𝑡−𝑝+𝑢𝑡,

where 𝑧𝑡 = (𝑦1𝑡,𝑥1𝑡, ...,𝑥𝑑𝑡)′ represents monthly series, transformed to achieve stationarity.

Here, 𝜖𝑡 denotes idiosyncratic disturbances at time 𝑡, 𝑓𝑡 is an 𝑟 × 1 vector of unobservable

common factors modeled as a VAR process of order 𝑝, and 𝑢𝑡 ∼𝑁(0,𝑄) are the disturbances

associated with the dynamic factors. Additionally, Λ is the matrix of factor loadings, and 𝐴𝑖
are the autoregressive coefficient 𝑟×𝑟 matrices. The idiosyncratic component of the monthly

series follows an AR(1) process:

𝜖𝑖𝑡 =𝛼𝑖𝜖𝑖𝑡−1+𝑒𝑖𝑡, with 𝑒𝑖𝑡 ∼ 𝑖.𝑖.𝑑.𝑁(0,𝜎2
𝑖 ) and 𝔼[𝑒𝑖𝑡,𝑒𝑗𝑡] = 0,∀𝑖 ≠ 𝑗

The model allows for the decomposition of unobserved factors into two categories: (i) global

factors, capturing cross-sectional comovement across all groups of explanatory variables (e.g.,

coincident/leading economic indicators, employment, credit, fiscal accounts), and (ii) group-

specific factors for each group of variables.

To achieve this, we restrict Λ, 𝐴1, 𝐴2, ..., 𝐴𝑝 and 𝑄, to partition 𝑓𝑡 into mutually independent
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global (g) and𝑚 group-specific (s) factors:

Λ=

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Λ𝑔,𝑠1 𝐴𝑠1,𝑠1 0 ... 0
Λ𝑔,𝑠2 0 𝐴𝑠2,𝑠2 ... 0
⋮ ⋮ ... ⋱ ⋮

Λ𝑔,𝑠𝑚 0 ... 0 𝐴𝑠𝑚,𝑠𝑚

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

𝑓𝑡 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑓𝑔𝑡
𝑓𝑠1𝑡
⋮
𝑓𝑠𝑚𝑡

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝐴𝑖 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐴𝑖,𝑔 0 ... 0
0 𝐴𝑖,𝑠1 ... 0
⋮ ⋮ ⋱ ⋮
0 0 ... 𝐴𝑖,𝑠𝑚

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝑄 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑄𝑔 0 ... 0
0 𝑄𝑠1 ... 0
⋮ ⋮ ⋱ ⋮
0 0 ... 𝑄𝑠𝑚

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

This framework accounts for cross-sectional correlation within group-specific blocks

while allowing for the efficient estimation of global factors. Importantly, 𝐴𝑖,𝑔 is not necessar-

ily diagonal, permitting the presence of multiple correlated global factors.

A.1 Data

The initial dataset comprises up to 182 series spanning January 2006 to September 2024. These

include structured data such as industrial activity indicators, prices, fiscal accounts, trade

balance, terms of trade, employment statistics, expectations survey indices, financial system

data, and equity market information. Non-structured data is represented by Google Trends

search volumes related to crises, expenditure, government transfers, and other topics.

To refine the dataset, a LASSO model was applied, optimizing hyperparameters for the

period 2011–2019. This procedure yielded a preselected subset of 155 variables.

Lastly, we transform the variables as follows. First, we apply seasonal adjustment to the

entire reduced dataset, using the software JDemetra+. Next, variables originally expressed

in levels are converted to month-on-month variations to meet the stationarity assumption.

Finally, we remove observations that are more than 10 times the Interquartile Range (IQR =
𝑄3−𝑄1, where𝑄𝑖 is the 𝑖-th quartile) from the mean. This outlier removal implicitly excludes
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most of the COVID-19 period.

A.2 Estimation

The details of the state-space representation can be found in Mariano and Murasawa (2010)

and Bańbura et al. (2013). The literature on nowcasting with DFM estimates 𝜃 = (Λ,𝐴,𝑄,𝜎2)
using maximum likelihood, through the Expectation-Maximization (EM) algorithm, which

accommodates missing observations. This algorithm roughly consists of iterating a two-step

approach, while treating the unobserved factors as latent variables: (i) given a current esti-

mate of 𝜃, we compute the expected value of the log-likelihood function of the complete data

(observed data and latent factors); and then (ii) wemaximize the expected log-likelihoodwith

respect to the parameters 𝜃, yielding new estimates of the parameters.

The algorithm works as follows: we begin with an initial guess for 𝜃. In the first step (Ex-

pectation Step), we use a KalmanFilter and Smoother to compute the conditional expectation

of the latent factors 𝑓𝑡 and their covariances, in order to calculate the expected value of the

complete data log-likelihood, which depends on the latent factors. In the second step (Maxi-

mization Step), the expected log-likelihood from the previous step is maximized with respect

to the parameters. We repeat the process until convergence; i.e., until the changes in the log-

likelihood between iterations become sufficiently small.

The algorithm is implemented using the DynamicFactorMQ class from the statsmod-

els library in Python. After evaluating several model specifications, we identified the best-

performing DFM configuration as one with two global factors modeled as a VAR process of

order 4. Additionally, we specified three group-specific factors for economic activity, employ-

ment, and expectations indicators, each following a VAR process with 3 lags. The remaining

four groups of variables were each modeled with a single factor following AR(1) processes.

B Dataset Description
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Variable Definition Frequency Aggregation

PBI_pesca Fishery GDP Monthly -

PBI_mineria Mining GDP Monthly -

elec Total electricity generation Monthly -

elec_sm Total electricity generation excluding demand from mining companies Monthly -

elec_resto Electricity generation excluding demand from mining and manufacturing companies Monthly -

elec_manuf Electricity demand from manufacturing companies Monthly -

cic Domestic cement consumption Monthly -

unacem UNACEM cement shipments Monthly -

afo Public Construction Monthly -

anchoveta Anchovy landings Monthly -

pet Oil production Daily Sum

lgn Liquefied natural gas production Daily Sum

gn Natural gas production Daily Sum

colocac Baby chicken placements Monthly -

ipc_tot Consumer Price Index Monthly -

ipc_sae CPI without Food and Energy Monthly -

ipm Wholesale Price Index Monthly -

ipc_aa Food CPI Monthly -

ipc_comb Fuel CPI Monthly -

ipc_ele Electricity CPI Monthly -

ipc_core Core CPI Monthly -

precio_pollo Wholesale chicken price Monthly -

arroz Rice supply to wholesale markets Monthly -

papa Potato supply to wholesale markets Monthly -

cebolla Onion supply to wholesale markets Monthly -

igv_int_real Real Domestic VAT Monthly -

ir Real Income Tax Monthly -

fbk Gross Capital Formation Monthly -

ingtrib Real tax revenues Monthly -

ingnotrib Real non-tax revenues Monthly -

volexp_trad Traditional export volume Monthly -

volexp_notrad Non-traditional export volume Monthly -

volimp_insum_plast Import volume of plastic inputs Monthly -

volimp_insum_hierro Import volume of iron Monthly -

volimp_insum_text Import volume of textiles Monthly -

volimp_insum_papel Import volume of paper Monthly -

volimp_insum_pquim Import volume of chemical products Monthly -

volimp_insum_qorg Import volume of organic chemicals Monthly -

volimp_bbk Import volume of capital goods without construction materials Monthly -

volimp_cons Import volume of durable consumer goods Monthly -

tdi Terms of Trade Monthly -

desempleo Unemployment Rate Monthly -

peao Employed Economic Active Population Monthly -

expti_12m BTS: Inflation expectations 12 months ahead Monthly -

exppbi_12m BTS: GDP expectations 12 months ahead Monthly -

sitactneg_indice BTS: Current business situation Monthly -

ventasn_indice BTS: Sales index with respect to the previous month Monthly -

producn_indice BTS: Production index with respect to the previous month Monthly -

nivdda_indice BTS: Demand level with respect to expected Monthly -

ordcompran_indice BTS: Purchase orders Monthly -

inv_nd BTS: Unwanted inventories Monthly -

eco3prox_indice BTS: Economy 3 months ahead Monthly -

ecoañoprox_indice BTS: Economy 12 months ahead Monthly -

sec3prox_indice BTS: Sector 3 months ahead Monthly -

secañoprox_indice BTS: Sector 12 months months ahead Monthly -

emp3prox_indice BTS: Company situation 3 months ahead Monthly -
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empañoprox_indice BTS: Company situation 12 months ahead Monthly -

dda3prox_indice BTS: Demand 3 months ahead Monthly -

ddaañoprox_indice BTS: Demand 12 months ahead Monthly -

cont3prox_indice BTS: Hiring 3 months ahead Monthly -

contañoprox_indice BTS: Hiring 12 months ahead Monthly -

invr3prox_indice BTS: Investment 3 months ahead Monthly -

invrañoprox_indice BTS: Investment 12 months ahead Monthly -

preinstresfor_indice BTS: Price of inputs 3 months ahead Monthly -

prevtatresfor_indice BTS: Sales price 3 months ahead Monthly -

indicca_p COS: Consumer confidence - Present Monthly -

indicca_f COS: Consumer confidence - Future Monthly -

credito_cons Private sector credit balance - Consumption Monthly -

credito_hipo Private sector credit balance - Mortgage Monthly -

credito_emp Private sector credit balance - Companies Monthly -

circulante Currency in circulation Monthly -

banc_actextlp Long-Term Net External Assets of banking companies Monthly -

banc_liqmn Liquidity in domestic currency of banking companies Monthly -

banc_obligvistamn Demand deposits in domestic currency of banking companies Monthly -

banc_obligahorrmn Savings deposits in domestic currency of banking companies Monthly -

banc_obligplazomn Fixed-Term Liabilities in domestic currency of banking companies Monthly -

banc_liqme Foreign currency liquidity of banking companies Monthly -

emisionprim Monetary base - End of Period Monthly -

credito_mn Credit in domestic currency (millions S/) Monthly -

credito_me Credit in foreign currency (millions US$) Monthly -

banc_creditomn Credit in domestic currency to the Private Sector of banking companies Monthly -

banc_cajamn Cash in domestic currency of banking companies Monthly -

banc_cdbcrpmn BCRP Certificates of deposit of banking companies Monthly -

banc_creditome Credit in foreign currency to the Private Sector of banking companies Monthly -

banc_depbcrpme Deposits in foreign currency in the BCRP of banking companies Monthly -

banc_pasextcp Short-Term External Liabilities in foreign currency of banking companies Monthly -

banc_pasextlp Long-Term External Liabilities in foreign currency of banking companies Monthly -

banc_obligme Liabilities in foreign currency with the Private Sector of banking companies Monthly -

rin Net International Reserves Monthly -

lbtr_mn_tot Payments through LBTR in domestic currency Monthly -

lbtr_mn_cheq Payments through LBTR in domestic currency with Checks Monthly -

lbtr_mn_transf Payments through LBTR in domestic currency with Credit Transfers Monthly -

lbtr_me_tot Payments through LBTR in foreign currency Monthly -

lbtr_me_cheq Payments through LBTR in foreign currency with Checks Monthly -

lbtr_me_transf Payments through LBTR in foreign currency with Credit Transfers Monthly -

tasa_pm Monetary Policy Reference Rate Monthly -

tasa_over National currency overnight deposit rate Monthly -

tasa_bonosper10mn Peruvian 10-year Government Bond Yield in S/ Monthly -

tasa_bonosper10me Peruvian 10-year Government Bond Yield in US$ Monthly -

tasa_encaje Reserve ratio Monthly -

tasa_amn Average lending interest rate in domestic currency Monthly -

tasa_pmn Average borrowing interest rate in domestic currency Monthly -

tasa_interbanc Interbank Average Interest Rate in domestic currency Monthly -

tasa_ame Average lending interest rate in foreign currency Monthly -

tasa_ipme Average borrowing interest rate in foreign currency Monthly -

tasa_hipomn Mortgage Loan Interest Rate in domestic currency Monthly -

mcdocap_bonos Bonds - Private sector Monthly -

mdocap_bonos_fin Bonds - Financial Institutions Monthly -

mdocap_bonos_nofin Bonds - Non-Financial Institutions Monthly -

mdocap_valpub Public Sector Securities Monthly -

igbvl General BVL Index Monthly -

isbvl Selective BVL Index Monthly -

valorafp Value of AFP Funds Monthly -
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tc_us_interbvta Interbank Exchange Rate Monthly -

tc_euro Euro Exchange Rate Monthly -

tc_realbil Bilateral Real Exchange Rate Index Monthly -

tc_realmult Multilateral Real Exchange Rate Index Monthly -

embig_peru EMBIG Peru Monthly -

gt_recesion Google Trends: recession Monthly -

gt_kia Google Trends: kia Monthly -

gt_toyota Google Trends: toyota Monthly -

gt_cine Google Trends: movies Monthly -

gt_restaurantes Google Trends: restaurants Monthly -

gt_creditos Google Trends: credits Monthly -

gt_prestamos Google Trends: loans Monthly -

gt_casas Google Trends: houses Monthly -

gt_departamentos Google Trends: apartments Monthly -

gt_ofertas Google Trends: offers Monthly -

gt_empleo Google Trends: employment Monthly -

gt_trabajo Google Trends: work Monthly -

gt_bloqueos Google Trends: blockades Monthly -

gt_crisis_peru Google Trends: peru crisis Monthly -

gt_quiebra Google Trends: bankruptcy Monthly -

gt_economia Google Trends: economy Monthly -

gt_crisis_economica Google Trends: economic crisis Monthly -

gt_terrenos Google Trends: land Monthly -

gt_inmuebles Google Trends: real estate Monthly -

gt_elecciones Google Trends: elections Monthly -

gt_viajes Google Trends: travel Monthly -

gt_vuelos Google Trends: flights Monthly -

gt_visa Google Trends: visa Monthly -

gt_machu_picchu Google Trends: machu picchu Monthly -

gt_hoteles Google Trends: hotels Monthly -

gt_alojamientos Google Trends: lodging Monthly -

gt_vacaciones Google Trends: vacations Monthly -

gt_bonos Google Trends: bonds Monthly -

gt_cts Google Trends: cts Monthly -

gt_afp Google Trends: afp Monthly -

gt_lluvias Google Trends: rains Monthly -

gt_el_niño Google Trends: el niño Monthly -

gt_sequias Google Trends: droughts Monthly -

gt_heladas Google Trends: frosts Monthly -

gt_huaicos Google Trends: huaicos Monthly -

gt_inflacion Google Trends: inflation Monthly -

gt_delivery Google Trends: delivery Monthly -

gt_pollo_a_la_brasa Google Trends: pollo a la brasa Monthly -

atsm Sea surface temperature (dummy variable) Monthly -

pmi_usa PMI USA Monthly -

pmi_china PMI China Monthly -

sentimiento Sentiment indicator Daily Average

vehiculos_livianos Number of Light Vehicules sold Monthly -

vehiculos_pesados Number of Heavy Vehicules sold Monthly -

vehiculos_menores Number of Small Vehicules sold Monthly -

temp_media Average national temperature Daily Average
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C Primary Industry

Table 9: Nowcast of YoY Primary Industry

GDP Lasso Ridge Elastic Net SVR DT KNN RF AdaBoost GBoost XGBoost Bagging MLP Mean ML DFM
Jan-22 -6.6 4.7 0.4 0.1 0.2 -17.5 3.5 -0.6 -7.7 -12.3 -12.4 -13.6 5.9 -4.1 2.2
Feb-22 -7.1 -1.7 7.2 4.0 2.6 3.2 -2.9 0.5 1.5 1.0 -7.2 -0.5 10.9 1.5 -0.1
Mar-22 -14.9 5.4 10.5 2.7 13.8 -6.9 -0.2 -11.2 -7.4 -7.8 -6.5 -8.5 12.1 -0.3 -12.7
Apr-22 -9.7 0.0 -0.3 2.2 3.3 -7.8 9.4 -3.9 -5.0 -7.8 -5.1 -4.3 -0.3 -1.6 6.2
May-22 -11.4 -12.0 -8.5 -8.1 -15.1 -15.2 -17.1 -12.6 -13.5 -15.0 -16.5 -16.6 -13.1 -13.6 -25.6
Jun-22 5.2 -2.8 -4.2 -3.3 -7.2 3.6 -3.4 -2.0 1.3 2.8 -2.3 1.6 -2.6 -1.5 0.4
Jul-22 12.7 14.9 9.5 11.2 12.7 24.1 17.1 19.3 19.6 20.9 19.6 21.9 9.9 16.7 32.8
Aug-22 -2.1 10.6 14.7 10.1 10.1 0.3 -1.7 7.6 4.8 3.3 14.4 2.2 15.3 7.7 0.7
Sep-22 -1.1 3.6 5.3 4.7 -4.1 4.6 1.7 6.3 3.9 4.4 3.6 5.7 4.5 3.7 3.3
Oct-22 2.3 -0.8 -8.4 -2.1 0.7 4.6 7.6 -0.3 5.2 3.2 0.1 1.1 -1.7 0.8 17.1
Nov-22 -1.7 -4.9 -3.6 -4.9 -0.7 -16.6 -2.7 0.9 -9.3 -11.9 -5.6 -10.9 -4.0 -6.2 1.9
Dec-22 4.8 1.7 7.2 4.0 4.3 18.9 2.4 -0.3 1.1 2.9 6.2 10.4 6.9 5.5 -9.1
Jan-23 12.7 1.9 3.5 3.4 13.5 15.7 12.6 8.2 9.0 8.0 8.7 16.4 2.2 8.6 25.3
Feb-23 23.0 13.8 12.5 14.1 15.2 12.1 20.0 18.7 13.3 9.3 14.8 11.0 15.0 14.2 17.5
Mar-23 29.3 44.0 32.4 39.4 21.2 32.5 42.7 33.8 32.4 35.2 27.3 31.4 14.5 32.2 23.1
Apr-23 12.4 14.7 16.1 7.1 19.7 4.2 22.4 28.1 21.2 15.4 12.9 15.3 8.9 15.5 28.5
May-23 -28.1 -16.4 -14.3 -18.9 -14.3 -1.2 0.8 -4.4 -6.6 -7.4 -9.3 -13.9 -15.6 -10.1 -2.2
Jun-23 -29.9 -24.3 -19.6 -23.9 -19.6 -25.0 -23.4 -22.5 -25.6 -23.5 -23.4 -24.8 -17.8 -22.8 -41.1
Jul-23 -18.1 -21.2 -23.2 -22.0 -20.8 -12.1 -17.9 -22.1 -18.2 -16.9 -20.2 -12.0 -21.3 -19.0 -23.9
Aug-23 16.4 7.9 6.2 6.8 5.5 7.8 -18.0 -11.0 10.3 16.3 2.0 15.4 5.9 4.6 -21.6
Sep-23 8.9 8.6 6.4 10.0 3.7 10.3 9.4 9.6 7.8 4.5 8.7 5.0 6.3 7.5 18.6
Oct-23 9.6 18.2 11.8 18.4 12.7 11.9 4.4 7.8 14.9 7.7 11.3 11.8 13.5 12.0 4.0
Nov-23 10.9 -6.1 -3.3 -6.1 -7.3 6.0 -1.4 2.2 1.8 1.0 -0.9 6.4 -2.2 -0.8 6.8
Dec-23 -28.1 -12.3 -10.6 -11.7 -9.9 -23.6 -5.2 -5.4 -12.0 -23.6 -15.8 -17.8 -12.8 -13.4 -11.8
Jan-24 -16.0 -24.1 -25.4 -25.4 -25.0 -29.4 -28.9 -28.4 -24.6 -27.3 -25.1 -29.0 -24.5 -26.4 -30.0
Feb-24 -22.7 -11.9 -13.7 -14.7 -8.4 -20.5 -15.1 -10.8 -18.4 -15.9 -14.8 -17.0 -12.2 -14.4 -12.1
Mar-24 -13.6 -17.4 -9.8 -11.7 -17.8 -17.0 -23.1 -18.7 -16.0 -17.2 -14.1 -17.4 -16.7 -16.4 -17.6
Apr-24 30.7 26.6 18.0 20.4 23.2 41.8 -1.4 9.3 34.9 38.6 34.9 26.8 18.6 24.3 -6.0
May-24 68.5 65.0 59.9 66.1 66.1 69.1 85.0 77.0 65.9 69.3 67.7 62.6 57.8 67.6 75.9
Jun-24 12.0 37.1 38.5 40.0 41.7 33.2 58.9 50.0 25.4 32.3 22.2 29.2 37.1 37.1 47.4
Jul-24 12.6 5.9 6.6 5.8 8.5 -0.8 9.1 7.0 3.8 5.1 0.4 0.9 8.9 5.1 13.1
Aug-24 -1.0 -1.6 1.9 -2.7 2.0 -6.5 -7.2 -7.1 -3.5 -5.7 -0.9 -5.5 1.4 -2.9 -11.0
RMSE 9.903 11.010 9.974 11.244 9.688 15.597 12.590 7.592 7.938 7.871 7.461 11.317 8.799 15.526
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D Agriculture

Table 10: Nowcast of YoY Agriculture

GDP Lasso Ridge Elastic Net SVR DT KNN RF AdaBoost GBoost XGBoost Bagging MLP Mean ML DFM
Jan-22 6.2 7.4 8.7 9.1 8.4 7.8 6.1 7.7 7.8 7.8 8.6 7.5 9.5 8.0 8.5
Feb-22 3.1 6.2 5.6 6.4 6.7 4.2 5.5 6.0 5.3 5.3 6.9 5.7 7.4 5.9 7.9
Mar-22 4.7 1.1 0.0 -0.1 2.2 5.4 4.5 3.5 3.6 3.3 4.2 3.8 1.1 2.7 7.4
Apr-22 7.5 1.5 1.7 2.1 1.5 3.5 4.0 3.1 3.8 2.2 2.7 2.5 1.8 2.5 6.8
May-22 8.2 4.8 4.9 4.8 4.4 4.5 5.3 5.2 5.1 7.0 4.7 4.9 4.8 5.0 5.0
Jun-22 -0.7 -2.1 -2.0 -1.5 -2.4 -0.9 -1.0 -1.3 -0.9 0.1 -1.9 -0.9 -1.1 -1.3 0.1
Jul-22 4.8 2.6 2.5 2.6 2.4 3.2 1.1 1.9 1.9 3.4 1.9 1.9 2.1 2.3 2.5
Aug-22 7.4 4.1 4.9 4.2 3.4 7.0 7.0 6.3 6.3 9.4 5.8 5.6 5.2 5.8 6.2
Sep-22 4.3 2.0 1.8 0.9 0.0 5.5 3.5 2.6 2.5 2.0 2.5 2.2 2.2 2.3 4.1
Oct-22 6.0 7.3 7.3 7.4 7.2 5.4 6.5 5.4 5.4 5.6 5.6 5.9 7.6 6.4 8.8
Nov-22 3.1 8.1 7.6 9.1 6.9 5.3 6.8 8.8 8.9 8.9 9.4 8.0 9.4 8.1 9.6
Dec-22 0.3 -0.2 0.6 -0.5 -0.4 4.2 1.8 1.8 1.9 0.3 1.6 1.9 0.1 1.1 1.0
Jan-23 3.5 1.9 2.0 2.3 0.8 1.4 0.7 1.9 1.7 3.0 2.0 1.9 2.3 1.8 2.1
Feb-23 0.3 3.1 3.6 4.5 3.0 5.6 5.1 4.6 4.7 5.2 4.3 5.0 3.8 4.4 4.9
Mar-23 0.4 2.2 1.2 1.0 1.8 0.4 1.1 1.8 1.3 1.9 2.3 1.1 1.3 1.5 1.0
Apr-23 -11.0 -0.1 -0.2 0.4 0.2 -0.7 0.6 -0.6 0.0 0.0 -0.4 -1.2 0.0 -0.2 -1.1
May-23 -4.3 -7.8 -9.2 -7.8 -9.3 -8.5 -7.3 -7.7 -8.2 -8.0 -8.0 -7.6 -9.2 -8.2 -15.0
Jun-23 -2.1 2.3 2.2 1.4 4.4 -1.6 -2.8 -2.1 -3.0 -3.4 -1.1 -1.7 2.0 -0.3 -2.7
Jul-23 -0.2 -2.3 -3.4 -3.0 -3.7 -1.0 -1.9 -2.5 -3.6 0.0 -2.1 -2.7 -1.8 -2.3 -2.2
Aug-23 -2.5 -3.2 -3.8 -3.6 -3.6 -1.0 -2.1 -2.3 -2.4 -5.2 -1.8 -1.1 -3.3 -2.8 -0.5
Sep-23 -7.5 -1.1 -1.4 -2.6 -1.0 0.3 -2.0 -1.6 -2.8 -0.3 -1.9 -1.4 -3.4 -1.6 -0.6
Oct-23 -5.3 -5.2 -7.0 -7.2 -5.1 -5.1 -6.3 -5.3 -4.8 -5.3 -5.5 -5.0 -6.5 -5.7 -3.2
Nov-23 3.2 -4.6 -4.4 -3.8 -4.0 -3.5 -1.5 -2.5 -3.0 -1.2 -1.6 -3.0 -4.4 -3.1 -2.0
Dec-23 0.7 5.7 4.5 5.1 3.7 3.4 4.3 4.5 3.5 4.0 3.7 3.6 5.1 4.2 1.5
Jan-24 -2.4 -0.1 0.5 1.1 0.0 -0.8 -1.0 -0.6 0.3 0.4 0.7 -1.7 0.8 0.0 0.5
Feb-24 -0.2 2.3 1.1 0.7 4.1 2.1 2.4 1.3 1.2 2.2 0.4 1.7 1.3 1.7 2.8
Mar-24 1.2 2.5 2.2 2.2 2.0 -2.4 1.3 1.3 0.5 4.8 1.9 1.5 2.7 1.7 0.7
Apr-24 24.0 12.8 13.0 13.1 13.3 13.4 13.1 12.7 12.6 12.5 12.4 11.9 13.0 12.8 11.9
May-24 4.8 6.5 6.5 6.1 5.1 8.5 10.5 8.7 9.7 5.9 8.5 9.4 6.6 7.7 7.9
Jun-24 -0.8 2.1 2.3 3.0 3.4 5.6 2.9 3.4 3.1 2.0 3.6 2.6 3.0 3.1 3.5
Jul-24 -3.4 -2.7 -2.6 -2.4 0.3 -3.1 -2.6 -2.3 -1.3 -0.8 -3.2 0.0 -1.7 -1.9 -1.2
Aug-24 -1.8 0.1 1.3 0.2 1.6 -1.0 -0.8 1.0 -0.8 6.1 -0.7 -0.9 -0.1 0.5 -0.9
RMSE 4.255 4.227 4.263 4.469 4.026 3.852 3.921 3.968 4.234 3.982 3.974 4.257 3.961 4.414
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E Retail Trade

Table 11: Nowcast of YoY Retail Trade

GDP Lasso Ridge Elastic Net SVR DT KNN RF AdaBoost GBoost XGBoost Bagging MLP Mean ML DFM
Jan-22 2.3 3.3 3.2 3.1 3.1 2.7 2.9 2.8 2.8 2.5 3.0 2.9 3.1 3.0 3.4
Feb-22 7.5 8.2 8.2 8.3 8.2 8.4 8.3 8.2 8.3 8.2 8.4 8.3 8.4 8.3 9.0
Mar-22 8.1 5.3 5.0 4.9 5.2 5.1 5.0 4.9 4.9 4.9 4.7 4.9 5.0 5.0 6.0
Apr-22 2.6 3.9 3.7 3.8 3.9 3.9 3.9 3.9 3.9 4.0 4.0 3.9 3.7 3.9 3.9
May-22 2.8 2.9 3.1 3.0 3.0 2.9 2.9 3.0 3.1 3.0 3.0 2.9 3.0 3.0 3.6
Jun-22 2.5 2.0 2.0 1.9 2.0 2.0 2.0 2.1 2.1 2.2 2.1 2.0 2.0 2.0 2.8
Jul-22 2.8 1.6 1.7 1.6 1.6 1.6 1.7 1.6 1.8 1.7 1.7 1.6 1.6 1.7 2.3
Aug-22 2.3 2.2 2.2 2.2 2.1 2.3 2.2 2.2 2.2 2.1 2.2 2.1 2.2 2.2 2.2
Sep-22 2.1 2.1 2.1 2.1 2.1 2.2 2.1 2.1 2.1 2.1 2.1 2.1 2.0 2.1 2.4
Oct-22 2.8 2.1 2.0 2.0 2.1 2.1 2.0 2.0 2.0 2.0 1.9 2.0 2.0 2.0 2.5
Nov-22 3.0 2.5 2.5 2.5 2.5 2.5 2.4 2.3 2.2 2.2 2.3 2.3 2.5 2.4 2.4
Dec-22 1.8 2.1 2.0 2.0 2.0 2.5 2.3 2.3 2.2 2.3 2.3 2.3 2.1 2.2 2.3
Jan-23 1.2 2.7 2.9 2.8 2.7 2.7 2.6 2.6 2.6 2.7 2.7 2.7 2.7 2.7 2.6
Feb-23 2.4 1.7 1.7 1.6 1.7 1.6 1.6 1.7 1.7 1.8 1.6 1.7 1.6 1.7 2.0
Mar-23 3.0 1.9 1.9 1.8 2.0 2.2 2.1 2.3 2.2 2.2 2.2 2.2 1.9 2.1 2.3
Apr-23 3.2 2.3 2.3 2.3 2.3 2.4 2.4 2.3 2.3 2.1 2.2 2.3 2.3 2.3 2.4
May-23 3.2 2.6 2.6 2.4 2.5 2.4 2.6 2.6 2.5 2.7 2.5 2.6 2.6 2.6 2.6
Jun-23 3.1 2.9 3.0 3.0 3.1 2.7 3.0 2.9 3.0 2.9 3.0 3.0 3.1 3.0 2.8
Jul-23 3.0 3.0 3.0 3.1 3.0 3.0 3.1 3.0 3.0 2.9 3.0 3.0 3.1 3.0 2.7
Aug-23 2.8 2.8 2.9 2.9 2.8 2.8 2.6 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.3
Sep-23 1.9 2.8 2.7 2.8 2.7 2.9 2.8 2.8 2.8 2.7 2.9 2.8 2.7 2.8 2.5
Oct-23 1.4 2.3 2.4 2.4 2.3 2.6 2.4 2.4 2.5 2.4 2.3 2.5 2.4 2.4 2.2
Nov-23 1.3 2.1 2.0 2.0 2.1 1.8 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.3
Dec-23 2.0 1.2 1.3 1.3 1.4 1.1 1.3 1.3 1.3 1.3 1.4 1.3 1.3 1.3 1.7
Jan-24 2.4 2.0 2.0 2.0 2.0 2.2 1.8 1.9 1.9 1.9 1.9 1.9 2.0 1.9 2.2
Feb-24 3.0 2.3 2.4 2.3 2.3 2.1 2.3 2.4 2.4 2.4 2.4 2.4 2.3 2.3 2.6
Mar-24 1.8 1.7 1.9 1.8 1.8 1.9 2.0 1.9 1.9 1.9 1.8 1.9 1.9 1.9 2.0
Apr-24 3.1 3.7 3.7 3.7 3.6 4.0 3.8 3.7 3.6 3.7 3.6 3.7 3.7 3.7 3.7
May-24 2.1 2.4 2.3 2.3 2.4 2.1 2.3 2.2 2.2 2.3 2.3 2.1 2.4 2.3 2.5
Jun-24 2.3 2.0 2.0 2.0 2.0 2.1 2.0 2.0 1.9 1.9 2.0 2.0 1.9 2.0 2.2
Jul-24 3.4 2.1 2.1 2.1 2.1 2.2 2.2 2.2 2.2 2.1 2.2 2.1 2.1 2.2 2.5
Aug-24 2.9 3.0 2.9 2.9 2.9 2.8 2.8 2.8 2.9 2.9 2.8 2.8 2.9 2.9 2.6
RMSE 0.871 0.883 0.913 0.866 0.890 0.881 0.884 0.879 0.898 0.924 0.896 0.892 0.885 0.768
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F Services

Table 12: Nowcast of YoY Services

GDP Lasso Ridge Elastic Net SVR DT KNN RF AdaBoost GBoost XGBoost Bagging MLP Mean ML DFM
Jan-22 4.0 4.6 4.5 4.5 4.5 4.4 4.7 4.6 4.5 4.3 4.6 4.5 4.5 4.5 4.2
Feb-22 7.0 8.3 8.3 8.3 8.2 8.3 8.2 8.2 8.2 8.2 8.3 8.1 8.4 8.2 8.6
Mar-22 4.5 5.6 5.6 5.7 5.5 5.3 5.2 5.2 5.2 5.2 5.2 5.2 5.5 5.4 5.9
Apr-22 5.2 4.1 4.0 4.1 4.1 4.3 4.0 4.0 4.1 4.0 4.2 4.1 4.1 4.1 4.8
May-22 4.6 4.7 4.6 4.6 4.6 4.4 4.5 4.6 4.7 4.8 4.7 4.6 4.6 4.6 4.5
Jun-22 3.6 3.6 3.7 3.7 3.9 3.7 3.9 3.9 3.8 3.8 4.0 4.1 3.7 3.8 3.9
Jul-22 2.4 3.3 3.3 3.2 3.2 3.2 3.1 3.0 3.1 3.1 3.1 3.0 3.2 3.2 2.8
Aug-22 2.9 2.3 2.3 2.3 2.4 2.7 2.5 2.6 2.6 2.7 2.5 2.5 2.3 2.5 2.6
Sep-22 3.0 2.3 2.4 2.4 2.3 2.1 2.4 2.3 2.3 2.4 2.6 2.2 2.4 2.3 2.3
Oct-22 2.1 3.0 2.9 2.9 2.9 2.7 2.9 2.8 2.8 2.7 2.9 2.7 2.9 2.8 2.6
Nov-22 1.7 2.5 2.4 2.5 2.5 2.4 2.3 2.4 2.4 2.6 2.3 2.4 2.4 2.4 2.0
Dec-22 -0.1 1.5 1.5 1.5 1.4 1.6 1.5 1.5 1.4 1.3 1.6 1.4 1.6 1.5 1.6
Jan-23 -1.2 1.0 1.1 1.1 1.0 1.5 1.2 1.2 1.2 1.3 1.4 0.8 1.1 1.2 0.1
Feb-23 -0.3 -0.7 -0.8 -0.8 -0.9 -0.8 -0.8 -0.7 -0.7 -1.0 -0.9 -0.9 -0.7 -0.8 -1.0
Mar-23 -0.6 -0.4 -0.5 -0.4 -0.2 -0.4 -0.2 -0.2 -0.3 -0.2 -0.2 -0.1 -0.6 -0.3 -0.5
Apr-23 -0.5 -1.3 -1.1 -1.2 -1.3 -0.8 -1.2 -1.0 -1.1 -1.1 -1.3 -0.9 -1.1 -1.1 -1.1
May-23 0.2 0.1 0.1 0.2 0.0 0.0 0.2 0.1 0.1 0.0 0.1 0.2 0.1 0.1 0.0
Jun-23 0.3 0.0 -0.1 0.0 -0.1 0.4 0.1 0.0 0.0 0.0 -0.1 0.1 -0.1 0.0 0.0
Jul-23 -0.6 0.4 0.3 0.5 0.6 0.1 0.3 0.3 0.2 0.3 0.3 0.4 0.4 0.3 0.3
Aug-23 -0.8 -0.5 -0.5 -0.3 -0.6 -0.7 -0.2 -0.4 -0.5 -0.5 -0.5 -0.6 -0.5 -0.5 -0.4
Sep-23 -0.7 -1.1 -1.1 -0.9 -1.0 -0.7 -0.9 -0.8 -0.8 -0.6 -0.9 -0.7 -1.0 -0.9 -0.6
Oct-23 -0.3 0.1 0.2 0.0 0.1 -0.2 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.4
Nov-23 -1.2 -0.4 -0.3 -0.3 -0.5 -0.6 -0.1 -0.3 -0.3 -0.4 -0.4 -0.3 -0.4 -0.4 0.4
Dec-23 0.8 -1.1 -1.0 -1.1 -1.1 -0.9 -1.0 -1.0 -1.0 -1.0 -0.8 -0.9 -1.1 -1.0 0.2
Jan-24 1.5 1.7 1.6 1.7 1.7 1.9 1.5 1.6 1.5 1.6 1.9 1.6 1.7 1.7 1.1
Feb-24 1.9 1.6 1.6 1.6 1.5 1.4 1.8 1.5 1.6 1.5 1.6 1.5 1.6 1.6 2.0
Mar-24 1.3 0.5 0.6 0.6 0.6 0.3 0.5 0.5 0.5 0.5 0.4 0.5 0.5 0.5 0.5
Apr-24 3.5 3.4 3.2 3.3 3.4 3.2 3.3 3.3 3.3 3.2 3.2 3.5 3.3 3.3 3.5
May-24 2.5 2.0 2.0 2.1 2.4 2.3 2.3 2.2 2.1 2.1 2.1 2.3 2.1 2.1 3.1
Jun-24 2.2 2.5 2.4 2.4 2.3 2.1 2.2 2.0 2.1 2.0 2.2 2.0 2.3 2.2 2.3
Jul-24 4.5 3.3 3.2 3.3 3.6 3.3 3.3 3.4 3.4 3.4 3.3 3.5 3.6 3.4 3.2
Aug-24 3.6 3.2 3.2 3.2 3.2 3.1 3.3 3.3 3.4 3.2 3.2 3.3 3.3 3.2 2.7
RMSE 0.868 0.863 0.872 0.842 0.861 0.855 0.841 0.816 0.838 0.864 0.778 0.855 0.839 0.784
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G Non-Primary Industry

Table 13: Nowcast of YoY Non-Primary Industry

GDP Lasso Ridge Elastic Net SVR DT KNN RF AdaBoost GBoost XGBoost Bagging MLP Mean ML DFM
Jan-22 0.1 5.5 5.2 5.6 5.5 5.1 5.9 5.6 5.0 6.1 4.6 6.0 5.7 5.486 5.8
Feb-22 5.8 1.9 0.8 1.8 2.4 -1.8 1.4 1.1 0.7 0.5 1.4 0.4 0.9 0.9 3.6
Mar-22 10.4 3.9 6.1 6.6 5.8 4.9 4.8 5.5 5.4 5.6 5.9 5.6 6.6 5.6 5.2
Apr-22 7.7 9.5 7.2 8.2 8.2 6.6 7.6 9.0 8.0 9.0 9.3 9.7 7.9 8.3 7.7
May-22 8.9 9.9 9.5 9.2 8.5 8.2 8.9 9.1 10.1 10.1 9.6 8.6 9.5 9.3 7.9
Jun-22 5.2 4.6 5.2 5.5 5.2 7.5 5.3 6.4 5.5 6.7 6.4 6.1 6.2 5.9 5.5
Jul-22 -1.1 4.4 4.5 4.3 4.5 6.8 4.3 4.8 4.7 4.8 4.1 4.4 4.5 4.7 3.8
Aug-22 1.5 0.5 0.9 0.9 0.9 1.6 0.5 1.1 0.7 -0.5 2.3 2.2 0.5 1.0 1.9
Sep-22 1.0 -1.1 -0.7 -1.2 -0.8 -2.3 -1.4 -1.2 -1.7 -1.4 -1.2 -2.0 -0.9 -1.3 -1.4
Oct-22 -0.9 3.1 3.2 2.7 2.8 2.8 3.5 2.7 2.3 1.1 1.4 2.7 2.7 2.6 2.7
Nov-22 -1.6 -1.6 -1.7 -1.7 -2.8 -0.9 -2.4 -0.9 -1.9 -1.7 -1.6 -1.0 -1.7 -1.7 -0.8
Dec-22 -8.4 -4.6 -4.3 -4.7 -3.5 -4.6 -2.6 -3.8 -3.5 -3.4 -3.5 -4.6 -3.3 -3.9 -5.2
Jan-23 -4.2 -2.6 -2.6 -2.3 -2.3 -4.2 -2.7 -2.9 -2.1 -3.5 -2.8 -3.2 -2.9 -2.8 -2.9
Feb-23 -8.8 -8.0 -8.6 -8.5 -8.0 -7.7 -8.3 -8.3 -8.5 -8.4 -8.6 -9.1 -7.9 -8.3 -9.4
Mar-23 -7.2 -11.3 -10.8 -11.2 -11.9 -10.1 -10.1 -10.3 -10.6 -10.2 -10.8 -9.8 -11.0 -10.7 -11.5
Apr-23 -8.3 -10.0 -9.6 -9.9 -10.1 -9.4 -8.8 -9.0 -9.6 -10.8 -9.2 -9.0 -10.5 -9.7 -9.7
May-23 -10.2 -7.7 -7.6 -7.9 -8.3 -7.4 -7.4 -6.7 -6.8 -8.1 -7.4 -6.8 -7.9 -7.5 -6.0
Jun-23 -7.9 -11.1 -10.6 -10.7 -10.6 -12.1 -10.4 -10.9 -11.0 -11.7 -11.1 -10.9 -10.4 -11.0 -9.9
Jul-23 -11.1 -3.8 -5.3 -5.4 -2.3 -5.6 -4.7 -4.3 -3.8 -5.2 -3.9 -3.2 -5.4 -4.4 -4.7
Aug-23 -8.6 -11.6 -11.4 -10.9 -11.8 -9.3 -9.9 -10.4 -10.8 -10.7 -10.8 -9.1 -11.3 -10.7 -9.6
Sep-23 -12.9 -13.5 -13.5 -13.9 -13.2 -13.2 -12.3 -12.2 -12.2 -13.1 -11.6 -11.4 -14.1 -12.9 -10.9
Oct-23 -7.6 -8.5 -7.2 -7.9 -8.7 -8.8 -7.9 -8.8 -9.4 -9.9 -8.1 -9.3 -8.0 -8.5 -8.1
Nov-23 -4.4 -8.1 -8.2 -8.8 -8.8 -10.1 -9.7 -8.8 -8.3 -8.9 -8.8 -8.9 -8.8 -8.8 -8.6
Dec-23 -3.7 -4.3 -4.1 -3.7 -3.0 -5.1 -2.5 -3.0 -2.7 -2.9 -2.9 -2.9 -4.2 -3.4 -4.5
Jan-24 0.5 -1.0 -0.6 -0.1 0.1 0.1 0.0 -1.1 -1.0 0.6 -0.4 -1.5 -0.5 -0.5 -0.8
Feb-24 3.1 1.9 1.2 1.9 1.8 1.4 1.9 1.8 1.1 2.1 1.9 1.4 1.9 1.7 1.7
Mar-24 -9.1 -7.9 -7.8 -7.8 -7.6 -6.8 -7.2 -7.0 -7.1 -6.7 -6.6 -6.9 -7.5 -7.2 -7.2
Apr-24 5.5 6.1 5.2 6.0 5.7 4.0 2.7 3.6 4.7 5.1 4.0 4.1 5.1 4.7 3.5
May-24 0.8 1.3 1.9 1.5 2.5 2.3 1.1 2.3 1.3 2.3 1.1 1.8 1.8 1.8 2.5
Jun-24 -4.1 -3.4 -3.6 -3.3 -3.7 -2.7 -3.3 -3.5 -4.0 -3.6 -3.2 -3.6 -3.5 -3.5 -3.6
Jul-24 10.3 6.3 6.5 6.7 6.5 7.2 6.6 5.9 6.6 5.2 7.4 6.6 7.2 6.6 6.8
Aug-24 4.2 2.5 2.2 2.4 2.1 5.2 3.9 3.6 3.5 3.5 3.1 3.3 2.3 3.1 3.8
RMSE 3.058 2.804 2.730 3.128 3.307 3.057 3.028 3.032 3.076 2.853 3.092 2.847 2.930 2.822
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