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1 Introduction

Headwinds of 2021-2023 have reminded policymakers in both emerging and advanced economies

that commodity prices matter. An agnostic view of commodity price dynamics, typically em-

ploying futures prices, can lead to notable inflation forecast errors (Chahad et al., 2023). The

issue is especially pertinent for emerging markets (EMs), including Ukraine, where food and

energy comprise a substantial portion – sometimes up to 50% – of the CPI basket. In addition,

some EMs rely on revenues from commodity exports to maintain their external balance and

stability on foreign exchange (FX) market. For instance, in war-torn Ukraine, solely grains

(mostly corn and wheat) accounted for 23% of total exports in 2023, up from 18% in 2021.

However, existing approaches to analyze and forecast commodity market developments offer

little to no reliable guidance on medium- to long-term fluctuations in commodity prices.

In this paper, I propose partial-equilibrium models of global wheat and corn markets that

simultaneously estimate grain prices and their trends. To this end, the models include produc-

tion and storage decisions of key exporting, including Ukraine, and importing countries. Unlike

most previous studies, this study uses a nonstationary setting with trending supply and demand

variables, following Miao et al. (2011). The models thereby allow for endogenous estimation of

price trends, drawing upon the medium-term dynamics of the underlying fundamental forces.

The results offer a novel interpretation of grain price dynamics over the past 40 years. In

contrast to trends, such as those obtained with statistical methods, which closely follow the price

series, the trend derived from the structural model exhibits larger deviations from the observed

data. These deviations often culminate in sharp price spikes or collapses when the production

and consumption trends intersect, typically corresponding to local minima in inventories. For

instance, during the early 2000s, when demand from emerging markets was gaining pace, real

grain prices fluctuated well below the trend. Instead, between 2007 and 2013, corn and wheat

prices surged above the trend, alongside other commodity prices, despite trend production

growth exceeding consumption. More recently, trend consumption has been growing faster

than production, leading to increasingly tight market conditions that make it more vulnerable

to large weather or trade shocks. Russia’s invasion of Ukraine demonstrated how structural

changes in quantities can have a disproportionate effect on price trends. Specifically, a 1%

decrease in global harvested areas resulted in a 4% higher price trend, while a 2% decline – in

a more than 10% increase in three years, relative to a no-change scenario.

By striking a delicate balance between the transparency of time series models and the

structural integrity of large sector-specific models, such a framework might become a valu-

able addition to policymakers’ toolkits. First, its results can be easily incorporated into other

forecasting models, including standard Quarterly Projection Models (QPMs), to reflect upon

exogenous to these models trends in world prices of selected commodities. Second, in contrast

to more sophisticated models operated by specialists (for instance, Aglink-Cosimo by OECD/

FAO (2022)), it requires a limited understanding of the market and a small number of as-

sumptions, which can be easily interpreted and communicated. Finally, developing scenarios

like those related to climate change becomes more straightforward. A solid understanding of
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its consequences for commodity prices and inflation might be particularly relevant for central

banks that contemplate adding climate change to their mandates.

The rest of the paper is structured as follows. Section 2 reviews the existing literature on

selected approaches to analyzing and forecasting commodity prices, emphasizing the underlying

price trends. In Section 3, the paper describes the partial-equilibrium model developed for the

joint estimation of prices and trends, highlighting its key components and assumptions. The

data used in the study is presented in Section 4. Section 5 provides a detailed discussion of the

results of applying the model to the corn and wheat markets and develops illustrative scenarios.

Finally, Section 6 concludes.

2 Literature review

This paper elaborates upon two major strands of literature on commodity prices.

Forecasting approaches Policymakers worldwide have long regarded futures prices as pre-

dictors of future commodity price movements (evidence spans at least from Greenspan (2004)

to Lane (2024)). However, futures markets tend to underperform relative to the no-change fore-

cast when the forecast horizon exceeds one year (Alquist et al., 2013). Earlier studies also show

that the predictive content of futures prices has been declining since the early 2000s (Chinn and

Coibion, 2014). Moreover, except for the upcoming one or two seasons, futures are typically

available for only a few months and tend to be thinly traded.

An alternative approach involves the use of standard univariate and multivariate econo-

metric models (Kilian and Murphy, 2014; Baumeister and Hamilton, 2019; Bondarenko, 2023).

While these models can provide reasonable price forecasts over short horizons, they rely on

linear trends. Given the high volatility in commodity prices, such linear models are less infor-

mative beyond 6 to 12 months.

Arroyo-Marioli et al. (2023) identifies consensus forecasts and macroeconometric models,

such as the Oxford Economic Model, as the preferred tools for constructing longer-term pro-

jections. However, both approaches have certain limitations. Consensus forecasts may lack

consistency with other key assumptions, such as on harvests or population growth. This is

particularly relevant for Ukraine, given its significant role in global corn and wheat markets.

Although Ukraine’s production accounted for only about 3-4% of global totals, it was the third-

fourth largest exporter of corn and the fifth-sixth largest exporter of wheat in 2014–2023 (on

average, about 14% and 9% of global trade, respectively). Additionally, consensus forecasts do

not allow for scenario analysis. In turn, large-scale macroeconometric models are costly and

complex to operate. This drawback applies to other sophisticated sector-specific models, such

as Aglink-Cosimo by OECD/FAO (2022), as well.

Commodity storage model Although primarily used for analytical purposes rather than

forecasting, the commodity storage model is a prominent structural model that operates within

a partial equilibrium framework. Initially proposed by Gustafson (1958), a theory of optimal
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storage and price determination was later brought into the empirical domain by Deaton and

Laroque (1992, 1995, 1996). In their simulations of the baseline model, authors managed

to replicate most of the key features of observed prices, except for the high autocorrelation.

Building on their findings, Deaton and Laroque (1996) suggested that the high autocorrelation

in prices should be attributed, at least partially, to the properties of the underlying supply

and demand forces. However, the role of storage in explaining price dynamics then weakens

substantially.

Therefore, the subsequent studies, following the standard approach in macroeconomic mod-

eling, mostly resorted to statistical methods to remove the trend in prices and then analyzed

the deviations from this trend with the competitive storage model. The existing body of lit-

erature primarily focuses on three distinct types of trends: linear, spline, and stochastic, each

of which has its own shortcomings. The classic linear trend in the logarithm of price (Cafiero

et al., 2011; Bobenrieth et al., 2013; Guerra et al., 2014) rotates from downward- to upward-

sloping depending on the period under consideration (Figure A.1(a) in Appendix). The use of

restricted cubic splines (Roberts and Schlenker, 2013; Gouel and Legrand, 2017) involves pre-

specifying the knots, with the main issue being how to determine the appropriate number of

knots. Depending on this parameter, price volatility in 2022–2024 can be attributed to either

trend swings or deviations from the trend, with future forecasts diverging significantly from

a downward to an upward trajectory (Figure A.1(b) in Appendix). In addition, just as with

the Hodrick-Prescott filter, a modeler working with splines faces the challenge of identifying

turning points in the cycle, represented by the knots, in real-time analysis (Figure A.1(c) in

Appendix). Osmundsen et al. (2021) questioned the economic logic of separating deterministic

trends from the pricing model since predictable income for stockholders has been generated in

this setting. The authors then proposed a stochastic trend, but it accounted for the majority

of price volatility, leaving the storage model to explain only a minor and often statistically

insignificant fraction (Figure A.2 in Appendix).

However, in the standard macroeconomic literature, both the practice of detrending prior

to applying a model and the hybrid approach of Canova (2014) are often viewed as inferior to

explicitly embedding trends into the model structure (Fernandez-Villaverde et al., 2016). Thus,

Bobenrieth et al. (2021) introduced a latent deterministic trend in production, which together

with consumer demand of HARA type alters the arbitrage condition of storage. With such a

model, the authors were able to generate high autocorrelation and a declining secular trend in

prices, but they stopped short of analyzing developments after 2007 (despite having access to

more than 10 years of data at the time of publication). The explanation for this may lie in the

fact that their model implicitly induces a common trend across production, consumption, and

prices, making it difficult to account for the structurally higher demand from EM countries and

the US ethanol mandate changes, factors widely cited in the literature as somehow responsible

for higher prices between 2007 and 2011 (Trostle, 2008; Trostle et al., 2011).

Instead, Miao et al. (2011) incorporated both supply and demand trends, which made

the price trend the outcome of the interaction between the two forces. This nonstationary
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trend-based model likewise captured most price properties, including high autocorrelation, in

simulations with artificially generated shocks to harvest. However, simulations involving actual

shocks required further ad hoc adjustments to grain prices to account for the impact of oil

prices, as the period under consideration included the energy crises of 1973 and 1979. Despite

this shortcoming, the framework of Miao et al. (2011) offers a valuable tool for explaining price

trends through economic fundamentals, as opposed to relying on an exogenous trend.

The model developed by Miao et al. (2011) extends Deaton and Laroque (1992), which does

not incorporate production decisions. Gouel (2013) shows how to add production decisions and

outlines various methods to solve for the optimal price function, including the endogenous grid

method. For the sake of experimental rigor, I apply both the original Miao et al. (2011) model

and the extended version with production decisions, treating the latter as the baseline.

3 Model

In this section, I develop a competitive storage model in spirit of Miao et al. (2011) and extend

it by incorporating the planting decisions of producers, as outlined in Gouel (2013). The model

features three types of agents – consumers, producers, and inventory holders – who collectively

shape market outcomes, along with a material balance equation. In each marketing year (MY)

t, consumer demand for grain is determined by a constant price elasticity demand function with

a trend component. Producers decide on acreage to maximize profits from the next harvest.

Stockholders optimize storage quantities to maximize profits from selling them at the real

price pt+1 in the subsequent period. The material balance equation, ensuring supply matches

demand, closes the model.

Consumption The consumer sector has a stylized representation, with consumer demand

D(pt) being a continuous function of price that contains a trend λD
t , a component with constant

price elasticity, and an exogenous demand shock εdt .

Ct = D(pt) = λD
t p

−ρ
t εdt (1)

The trend λD
t , which reflects the long-term growth in grain demand, is primarily influenced

by two factors: population growth and income growth. Assuming that the consumption pat-

terns of new individuals align with those of the existing population, an increase in the number

of individuals would consequently lead to a corresponding rise in the total quantity of grain

consumed (Baffes and Nagle, 2022). In turn, as income increases, consumers would be able to

afford larger quantities of both grains and meat, thereby enhancing the demand for grain as

animal feed, particularly in developing countries (Janzen et al., 2014). Income growth played

a lesser role in the case of wheat, where the total quantity consumed has mirrored population

growth since 1980. By contrast, the demand for corn has been rising about as rapidly as GDP

at market exchange rates, particularly after the global financial crisis (Figure A.3 in Appendix).

However, both income and population trends appear only imperfect proxies for consumption
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trends. Thus, it is more appropriate to use actual consumption data within this framework,

leaving alternatives for future research that incorporates more sophisticated demand functions.

Production Each period t, producers make an acreage decision to maximize their expected

profits from the harvest Ht+1 to be collected in the following MY1. The total harvest is given

by the product of the area planted At and the anticipated next-period yield Yt+1, as in Ht+1 =

AtE(Yt+1). Both area and yield can be further broken down into trend and gap (or shock)

components, At = Ātε
a
t and Yt = Ȳtε

y
t , respectively.

The yield trend Ȳt is primarily driven by technological innovations and better managerial

practices by producers. Today, it can be argued that worsening weather conditions (including

higher temperatures and increased evapotranspiration) may act as a headwind, offsetting tech-

nological progress (like drought-resistant seeds and new irrigation systems), potentially causing

long-term yields to flatten or decline. In their expectations of next-MY profit, producers rely

on the estimates of long-term trend yield E(Ȳt+1). Still, they have no control over the final

outcome because of the random component in yield, εyt . This gap between actual and expected

harvests primarily results from short-term weather fluctuations and the harmful impact of pests.

While they are fully exogenous to the model, substantial skill has been achieved in forecasting

seasonal mean temperatures and precipitation, especially in the tropics and in regions with

strong teleconnections with ENSO2. Moreover, there is some evidence of the impact of large-

scale circulations, like ENSO, NAO, etc., on crop yield anomalies (Iizumi et al., 2014; Ceglar

et al., 2017). Thus, although variability in εyt can be to certain extent predictable well before

harvest, I exclude this channel from the farmer’s problem for now, deeming it insignificant, –

this assumption can be revisited later.

πa
t+1 =

E(Pt+1Ht+1)

1 + r
− c(Āt) =

E(Pt+1ĀtȲt+1ε
a
t ε

y
t+1)

1 + r
− Āα+1

t

(1 + r)(α + 1)
(2)

Production involves sowing costs that are modeled by an isoelastic cost function c(Āt),

where the cost varies with the acreage planted. However, the available data refers to the

area harvested, not the one planted. Although the former is often a reasonable approximation

for the latter, they differ somewhat in both their absolute levels and short-term fluctuations

(see Figure A.4 in Appendix for the U.S., where both series can be obtained from the NASS

survey). Therefore, εat encompasses several important elements that are currently omitted from

the cost function, such as expected prices of key inputs (oil/diesel, fertilizers), expected prices

of alternative crops, and price risks3, as well as measurement errors. εat is realized at the end

of the year t, after the sowing decision is done.

The cost function is also normalized by the factor (1 + r), where r denotes a cross-period

real interest rate, to ensure that the model’s deterministic steady state is normalized to 1 when

trends are set to 1.

1The marketing year varies slightly depending on the crop, but it usually starts with harvest and ends before
the next year’s harvest.

2Nevertheless, the accuracy of a seasonal forecast is lower than that of a week-ahead forecast.
3The gap between expected and realized prices
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The solution to the profit maximization problem results in a constant elasticity supply

function, with acreage planted Āt being a strictly increasing function of the expected per-acre

revenue4.

Āt = E(Pt+1Ȳt+1ε
a
t ε

y
t+1)

1
α (3)

Instead, if supply is completely inelastic, harvest is simply the product of trend area planted

Āt, trend yield Ȳt+1, and supply shocks εat and εyt+1.

Storage Risk-neutral inventory holders, operating in a competitive market, seek to maximize

profits by purchasing grains at a lower price in period t and selling them at a higher price in

the subsequent MY.

Et(π
s
t+1) =

1− δ

1 + r
Et(pt+1)It − ptIt − κIt (4)

The costs associated with storage include fixed physical per-unit costs κ, depreciation δ,

and the opportunity cost (1+r). Taking into account his expectations of price, the stockholder

decides on the amount to store, It, subject to the constraint that the quantity It cannot be

negative. This gives rise to the intertemporal complementarity condition.

It ≥ 0 ⊥ 1− δ

1 + r
Et(pt+1) ≤ pt + κ (5)

Thus, whenever the expected profit from carrying an additional unit of inventory is positive,

stockholders will demand more inventory and bid up prices until the current and expected price,

adjusted for carrying costs, converge. Conversely, an expected loss from holding inventories

would imply zero holdings in t. Competition guarantees the absence of arbitrage profit from

storage.

The market demand curve becomes kinked in the presence of inventory holders, as these

agents create additional demand at lower price levels in order to take advantage of cost-effective

storage opportunities (Figure 1). For its part, storage plays a crucial role in mitigating price

volatility in the event of a negative harvest shock. For instance, a decline in availability from

Q1 to Q2 would normally cause the price to increase from p1 to p2, but in the presence of stored

inventories, it rises only from p∗1 to p∗2.

Material balance Availability Qt is the sum of the new harvest Ht and quantities stored

in the previous period It−1, subject to a constant linear depreciation rate δ. Qt can either be

consumed or stored for the next period.

Qt = Ht + (1− δ)It−1 (6)

4For corn, per-acre revenue was also augmented by the trend in harvested areas, as the model without this
trend failed to replicate the steep increase in areas and produced unreasonable parameter values.
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Figure 1: Market demand function with and without storage

Parameter values are β = 0.989, δ = 0.023, ρ = 0.19, and κ = 0, as estimated in Miao et al. (2011). All trend
values are set to 1.

Qt = Ct + It (7)

This concept corresponds to the balance sheet used by the U.S. Department of Agriculture

(USDA) to discipline individual-country estimates of supply and demand (Vogel and Bange,

1999). The balance sheet equation ensures that total grain supply (the sum of production,

imports, and beginning stocks) equals total distribution (the sum of consumption, exports, and

ending stocks) for each country and marketing year. Since exports and imports largely offset

each other, up to a minor discrepancy, related to reporting differences and grain in transit, I

currently omit trade in the analysis.

Equilibrium A stationary rational expectations equilibrium (SREE) is a price function f –

rather than a single value – that is monotonically decreasing in the state variable, pt = f(Qt)

(Deaton and Laroque, 1992). When harvest is supplied randomly and inelastically, that is

producers assume rather than choose area planted Āt, it is characterized by the first-order

condition (5) and the transition equation (6). If producers optimize with respect to acreage,

another condition (3) is added to the system.

Solution The equilibrium price function f lacks an analytical solution and must be solved

numerically. For models with inelastic supply, several methods can be used, including the basic

fixed-point iteration method outlined in Deaton and Laroque (1992). However, when time-

varying parameters are introduced, the grid of states Qt changes every time period, requiring

an increasingly large number of evaluation points and thus increasing computational burden. To
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handle this, I use the endogenous grid method (EGM) of Carroll (2006), as suggested by Miao

et al. (2011), which places a grid on the decision variable It. For the model with endogenous

production, I enhance the EGM by adding an extra step to solve for acreage At using the FOC

(3) at each It gridpoint every second iteration, as outlined in Gouel (2013).

Parameters I calibrate the models to match moments in the price data, namely coefficient

of variation and first two autocorrelations. The model with exogenous areas and i.i.d. harvest

shocks has four structural parameters – real interest rate r for time discount factor, demand

elasticity ρ, depreciation rate δ, and storage cost κ, – whereas the model with endogenous

production includes also supply elasticity α. The parameter r is calibrated as the average 1-

year U.S. Treasury yield in 1987/88 MY to 2022/23 MY, adjusted for expected PCE inflation

and aggregated on a marketing-year basis for the Northern Hemisphere5. As the values are

approximately the same, r = 0.93% in both the corn and wheat models. In line with the USDA

data, where ending and beginning stocks are equal, depreciation δ is set to zero.

The remaining parameters are estimated with the simulated method of moments. For each

candidate set θ = [ρ, κ, α], I simulate a series of artificial prices for the years 1987 to 2024

using the re-estimated function path along with the actual shocks to production and consump-

tion. Next, the moments obtained from the simulations (ith order autocorrelations âc(i) and

coefficients of variation ĉv) are compared with with those observed in the data (corresponding

variables without hats) to choose a set of optimal parameters θ̂ that minimizes the sum of their

squared differences.

min
θ

2∑
i=1

(ac(i)− âc(i))2 + (cv − ĉv)2 (8)

When considering exogenous supply, the objective function is initially evaluated on a sparse

grid of 1,000 points, where ρ takes values between 0 and 1, and κ varies between 0 and 0.5.

The grid is then refined over a narrower set of parameter values, with the maximum values of

ρ set at 0.6 and 0.4, and those of κ set at 0.1 and 0.07 for corn and wheat, respectively (see

Figure A.6 in the Appendix). Owing to the substantial computational burden, the parameters

ρ and α were restricted to the interval [0, 0.5], κ to [0, 0.25] in the endogenous production case.

Moreover, several stages of grid refinement, focusing exclusively on areas near the minimum

values of the objective function, were necessary to to obtain optimal parameter values with the

same level of precision.

The estimated parameters ρ and α in Table 1 show that both demand and supply are

relatively inelastic, consistent with previous studies. For instance, Roberts and Schlenker (2013)

report demand elasticities for caloric intake (maize, wheat, rice, and soybeans) ranging from

-0.05 to -0.08, and higher (in absolute values) supply elasticities of 0.08 to 0.13, with the supply

response mainly driven by land area expansion. Gouel and Legrand (2017) finds demand

elasticities of -0.03 for wheat and -0.06 for corn, whereas Miao et al. (2011) estimates for wheat

5For wheat, July to June; for corn, October to September.
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Parameter r δ κ ρ α σa σy σd

Corn 0.0093 0
0.062 -0.11 0.015

0.0206 0.034 0.0160
0.069 -0.12 –

Wheat 0.0093 0
0.035 -0.065 0.03

0.0186 0.023 0.0143
0.042 -0.08 –

Table 1: Parameter values

are higher at about -0.19, or within a range of -0.12 to -0.22. By contrast, models focusing

solely on consumer demand often report higher elasticity values, with those collected by the

USDA for products like wheat, maize, and cereals frequently clustering around -0.3, -0.5, and

-0.7 to -0.8. While the fixed storage costs are generally comparable to those reported in Gouel

and Legrand (2017), they are slightly higher, likely owing to the lower fixed interest rate of

0.93% in this study, as opposed to the 5% rate used in Gouel and Legrand (2017).

The standard deviations of shocks σa, σy, and σd capture the standard deviations of area,

yield, and consumption deviations from their respective trends.

Trends Following Miao et al. (2011), I treat trending variables λD
t , Ȳt, and (in the model with

inelastic supply) Āt as time-varying parameters. This formulation implies that, in contrast to

the equilibrium framework of Deaton and Laroque (1992), for each period t, there exist an

equilibrium price function ft rather than a single SREE (Figure 2).

(a) Corn (b) Wheat

Figure 2: Market and consumer demand functions for the baseline model in selected MYs

While this approach offers the advantage of simplicity and lower computational cost by

keeping the number of state variables at one, it introduces a trade-off in terms of economic con-

sistency. Specifically, the resulting equilibrium assumes that future price functions will remain

unchanged from the present. A more consistent approach – such as constructing an extended

function path to account for rational expectations of changes in time-varying parameters, as

proposed by Maliar et al. (2020) – is left for future research.
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4 Data

This section first describes the price data used to estimate actual moments, which are then

compared with simulated moments in the process of model calibration. It then discusses the

quantity series used to calibrate the trends and the construction of alternative scenarios.

Prices In the case of traded commodities like wheat and corn, which are generally standard-

ized but still feature some degree of differentiation6, specific reference or benchmark prices

might depend on application. The National Bank of Ukraine relies in its analysis and forecast-

ing processes on the data from the IMF’s Primary Commodity Price System, deeming it as the

most informative on the evolution of export prices of Ukrainian grains. Thus, this paper also

uses benchmarks from the IMF: Kansas City No. 1 Hard Red Winter for wheat and Louisiana

No. 2 Yellow for corn. Prices are then adjusted by the U.S. Consumer Price Index (CPI) to

account for changes in the general price level over time.

To reconcile the monthly data from the IMF’s Primary Commodity Price System with

the annual data from other sources, it is necessary to aggregate the price series. However,

given the importance of current and expected prices in shaping the decisions of producers

and competitive stakeholders, a basic aggregation method, like the calendar average, could

prove to be inappropriate. Thus, I compute averages over the marketing year in the Northern

Hemisphere7, while acknowledging that differences in sowing times between hemispheres could

lead to divergent price expectations in different regions. This concern is particularly relevant

for corn, where the combined exports of the three largest Southern Hemisphere exporters –

Argentina, Brazil, and South Africa – accounted for over 40% of global exports in the most

recent five-year period, with their combined production comprising around 15% of the world

total. However, the development of a multi-region, multi-period model is beyond the scope of

this study and is to be addressed in future research.

Consistent with previous studies, the price data exhibits a high degree of autocorrelation at

both first and second lags, pointing to a persistence in price movements over time. However, the

price data used in this paper, which spans from 1987 onward due to the limited availability of

disaggregated production data, shows lower values across all of the presented statistical metrics

compared to the longer time series analyzed by Deaton and Laroque (1992) and Miao et al.

(2011) (Table 2).

It should also be noted that, at higher frequencies, such as quarterly, relatively large price

fluctuations occur more often, consistent with the model of speculative behavior, which leads

to increased skewness and kurtosis. Quarterly prices also show higher autocorrelations, where

high and low prices tend to be followed by high and low prices, respectively. Therefore, future

studies could benefit from incorporating quarterly rather than annual data, though this would

require addressing harvest discontinuities.

6For instance, USDA and traders distinguish several U.S. grain grades that reflect the general quality and
condition of a representative sample, marked by ”No. 1”, ”No. 2”, etc.

7For wheat, July to June; for corn, October to September.
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Statistic
Corn Wheat

DL (1992) This paper DL (1992) MWF (2011) This paper

Autocorrelation(1) 0.76 0.63 0.86 0.83 0.57
Autocorrelation(2) 0.53 0.29 0.68 0.63 0.20

Coefficient of variation 0.38 0.27 0.38 0.49 0.27
Skewness 1.18 0.90 0.87 1.57 0.36

Excess kurtosis 2.48 0.13 0.61 2.60 -0.92

Table 2: Descriptive statistics

Supply and demand USDA is a widely recognized and reliable source of data on agricultural

markets. It provides estimates for key components of the supply and demand equation –

including beginning stocks, production, area, yield, imports, exports, consumption, and ending

stocks – for most countries, on a MY basis. As per the countries listed below, the balanced

panel of series starts in the 1987/88 MY.

In its influential WASDE report, USDA classifies Argentina, Brazil, Russia, South Africa,

Ukraine, and the United States as major exporters of corn, and Egypt, European Union (with

the UK), Japan, Mexico, Southeast Asia8, and South Korea as major importers of corn. Japan,

Malaysia, and South Korea are excluded from the sample, as their production and areas har-

vested are comparatively small. To maintain a balanced representation of the global market,

Canada, China, India, Angola, Nigeria, Tanzania, and Uganda are incorporated into the anal-

ysis. The selected countries and country groups represent, on average, about 82% of corn areas

and 92% of global production.

Major wheat exporters, as defined by USDA, consist of Argentina, Australia, Canada, the

European Union (with the UK), Russia, Ukraine, and the United States. In contrast, the list of

major wheat importers is broader, covering regions such as North Africa9, the Middle East10,

and Southeast Asia11, along with countries including Bangladesh, Brazil, China, South Korea,

Japan, Nigeria, Mexico, and Turkey. To ensure a relatively stable share for the rest of the

world, I include also India, Kazakhstan, Pakistan, Ethiopia, and Uzbekistan. This extensive

set of countries covers nearly 95% of the total wheat area harvested and almost 96% of global

wheat production.

Each country’s acreage and yield series are filtered using the HP filter with a lambda of 100,

consistent with standard practice for annual data, to separate long-term trends from short-term

fluctuations. The resulting country-specific trends are then aggregated to construct a global

trend. The shocks, denoted as εat and εyt , are calculated as the deviations between the global

areas harvested and yields, respectively, and their corresponding trends, which are derived from

the country-level filtered data.

8Indonesia, Malaysia, Philippines, Thailand, and Vietnam.
9Algeria, Egypt, Libya, Morocco, and Tunisia.

10Lebanon, Iraq, Iran, Israel, Jordan, Kuwait, Saudi Arabia, Yemen, United Arab Emirates, and Oman. The
sample includes only Iraq, Iran, and Saudi Arabia, as other countries produce negligible amounts.

11Indonesia, Malaysia, Philippines, Thailand, and Vietnam. No countries produce any relevant output, and
thus, they are not explicitly represented in the sample.
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Figure 3: Projected world wheat and corn area under different Ukraine export scenarios

This approach to constructing trends facilitates the analysis of the impact of country-specific

events on global yield, harvested areas, and, consequently, price trends. For example, Russia’s

invasion of Ukraine and the subsequent closure of ports severely disrupted Ukraine’s ability to

export. Alternative transportation routes, such as railways, roadways, and Danube ports at

maximum capacity, were only able to sustain just over half of Ukraine’s pre-invasion export

volumes, and only around 30% at average capacity. Unless for the successful operations of

Ukraine’s Armed Forces, which allowed ports to resume operations, this would have further

reduced the area planted in Ukraine. As shown in Figure A.5 in the Appendix, there has been no

structural break in yields; rather, the impact was absorbed by a reduction in acreage. Instead,

had it not been for the invasion, Ukraine’s planted areas would have been approximately 30–35%

higher. Ukraine’s areas represent only 2-3% of global harvested areas, but such a significant

change would still result in a 0.8-2% drop in global trend areas, relative to the ’normal’ scenario

without the invasion (see Figure 3). Ukraine’s status as a major exporter would amplify the

impact on prices.

Since world consumption of corn and wheat generally exhibits relatively low volatility from

year to year, each is treated as a separate global aggregate, simplifying the analysis by omitting

a country-by-country breakdown. The shock, εct , represents the differences between actual

consumption series and its smoothed HP-filtered trend, capturing unexpected fluctuations in

global consumption patterns for each crop.

5 Results

The analysis reveals patterns in grain prices that differ slightly from those found with statistical

methods. By construction, the interplay between production and consumption trends directly

shapes price trends, with periods of stronger production than consumption growth associated

with lower prices, and vice versa (Figure 4), in line with economic theory. Before the mid-
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1990s, supply outpaced demand, leading to a prolonged decline in price trend that culminated

in a sharp price drop by the 2000s. In the early 2000s, however, demand – driven largely

by emerging markets amidst globalization and rising incomes – surpassed production growth,

before production again took the lead. As a result, price trends peaked several years before the

price spikes of 2007–2013, when the prices of major commodities, including corn and wheat,

surged. When wheat production is endogenous, this pattern largely disappears, suggesting

that fluctuations in planted areas are the primary cause of the volatility12. Since 2015, the

slowdown in production growth has outpaced that of consumption, contributing to greater

upward pressure on prices.

(a) Corn

(b) Wheat

Figure 4: Actual and simulated grain stocks13and prices

Prices simulated with shocks εat , ε
y
t , and εct are shown with dotted lines.

While the models are calibrated to closely match actual and simulated moments (first two

12As Figure A.7 in Appendix shows, the model’s trend areas, generated without exogenous inputs, deviate
somewhat from actual data.

13World stocks, excluding China (assumed to be mostly owned by the government (Deuss and Adenauer,
2020)) and estimated U.S. public stocks until 1988 (according to Zulauf et al. (2021), the 1985 Farm Bill,
coupled with the severe 1988 drought, played a key role in reducing public stocks, and the 1996 Farm Bill
subsequently eliminated most public stock programs).
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autocorrelations and coefficient of variation), the Exo model14 achieves a better fit. Overall,

the three shocks from USDA quantity data are insufficient to fully capture price dynamics. Of

the factors identified in Trostle (2008) and Trostle et al. (2011), the model fully or partially

incorporates only about half, through either trends or shocks. It notably omits international

trade and policies of key exporting and importing countries, which can amplify the effects of

regional shocks, such as weather events, on prices. These results align with previous studies,

suggesting that unforeseen macroeconomic shocks fail to translate into commodity price fluc-

tuations, with own price movements responsible for the majority of variance in both nominal

and real prices (OECD, 1993). Moreover, the models also overlook the relationship between

commodities, particularly oil, price of which remained consistently high between 2007 and 2015.

Apart from the financialization of commodities (Janzen et al., 2014), the most apparent link

between grain and oil prices lies in the production costs. Since oil is an essential input to both

the fuel needed for planting and harvesting, and the fertilizers and pesticides required for crop

growth, higher oil prices tend to drive up agricultural costs across the board and, as a result,

grain prices.

Statistic
Corn Wheat

Actual Exo mod Endo mod Actual Exo mod Endo mod

Autocorrelation(1) 0.63 0.61 0.33 0.57 0.60 0.51
Autocorrelation(2) 0.29 0.29 0.14 0.20 0.15 0.39

Coefficient of variation 0.27 0.21 0.22 0.27 0.22 0.22
Skewness 0.90 1.68 0.88 0.36 1.49 0.94

Excess kurtosis 0.13 4.11 0.55 -0.92 1.94 0.34

Table 3: Summary statistics of actual and simulated prices

The models simulate not only prices but also stocks, chosen by the competitive inventory

holder. While stock-outs are unlikely in practice due to the need to maintain operational inven-

tories, multi-period stock lows are consistently associated with price spikes. The ”Exo” model

performs particularly well in tracking the dynamics of stock deviations from these minimums.

Notably, these minimums frequently coincide with the intersections of trends in production and

consumption.

Russia’s invasion of Ukraine, which in the model is reflected solely by a reduction in

Ukraine’s harvested areas (as international trade is currently omitted), has influenced trend

prices, particularly in the Exo model. Relative to a counterfactual scenario without the inva-

sion, corn price trend was just 1% higher in the first year, but the gap widened to around 4%

by the current year. For wheat, the effect was more pronounced, with price trends decoupling

by 3% to 4.5%. However, these changes remain relatively moderate compared to a scenario of

continuous disruption to Ukraine’s sea exports, which would have caused trend prices to rise

by 13% to 18% by the third year of the war (Figure 5).

14Hereafter, the label ”Exo” denotes variables produced by the model with an exogenous trend in the area
harvested, while ”Endo” refers to those generated by the model that incorporate producers’ endogenous decisions
regarding acreage.
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(a) Corn (b) Wheat

Figure 5: Alternative price trends in Exo model after the invasion

6 Conclusions

This paper presents a thorough attempt to reconsider the conventional approaches used to an-

alyze trends in corn and wheat prices, highlighting their limitations, and proposes instead an

alternative framework. Rather than relying on econometric techniques such as splines or HP

filters, it employs a structural model that builds upon the commodity storage model, incorpo-

rating trending supply and demand shifters. These trends are calibrated using comprehensive

USDA data on quantities produced and consumed, aiming to ensure a robust connection of

prices to real-world market conditions. The structural parameters are then estimated with the

method of simulated moments.

The outlined approach provides a more comprehensive understanding of how price trends

are influenced by evolving market fundamentals. In this setup, periods where production grows

more rapidly than consumption are accompanied by lower prices, and conversely, when con-

sumption growth outpaces production, prices tend to rise. Consequently, real grain prices

fluctuated well below the trend in the early 2000s before before surging in 2007-2013, in tan-

dem with rising oil prices, amid a backdrop of declining price trends. Structural breaks in

consumption or production, like the reduction in Ukraine’s harvested areas, can also have a

disproportionately large impact on trends. Specifically, this decline led to a 0.8-1% drop in

global trend areas but a roughly 4% rise in global trend prices relative to a counterfactual

scenario without the invasion.

In addition, the paper confirms that incorporating trends in fundamental variables can ad-

dress the long-standing issue of high correlation in commodity prices, which is hard to replicate

using storage alone.

Nevertheless, to accurately capture price dynamics, the models would require further exten-

sions, particularly the inclusion of international trade. This addition would allow the models

to account for trade shocks, such as export bans or involuntary export cuts under the pressure

of exogenous factors, say the blockade of Ukraine’s Black Sea ports at the outset of Russia’s
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full-scale invasion. Additionally, the models could also benefit from integrating production and

consumption trends as autocorrelated variables, rather than treating them as static param-

eters. Lastly, incorporating semi-annual data to account for the growing significance of the

Southern Hemisphere, especially for corn, or quarterly data to capture intra-season price spikes

and align with the standard reporting frequency of policymakers, would enhance the model’s

applicability.
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Figure A.1: Logarithm of real prices and alternative trends: (a) linear (top), (b) restricted
cubic spline (middle), (c) Hodrick-Prescott filter (bottom)
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Figure A.2: Commodity prices and filtered price components from Osmundsen et al. (2021): (a)
time series plot of the log price in blue and the estimated filtered mean of the stochastic trend
component in red (top), (b) time series plot of the estimated filtered mean of the storage model
component in red, gray shaded areas indicate the 95% credible intervals under the filtering
densities, and the black horizontal lines mark the boundaries of the storage regimes (bottom)
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Figure A.3: Indexes of world grain consumption proxies (1987 = 1.0)
Source: USDA, IMF, U.S. Census Bureau International Data Base.
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Figure A.4: Harvested and planted corn and wheat areas in the U.S.
Source: USDA National Agricultural Statistics Service.

Figure A.5: Corn and wheat areas harvested and yields in Ukraine

23



(a) Parameters for the corn model with inelastic supply

(b) Parameters for the wheat model with inelastic supply

(c) Parameters for the corn model with endogenous areas

(d) Parameters for the wheat model with endogenous areas

Figure A.6: Squared difference between simulated and actual moments

24



Figure A.7: World wheat areas harvested
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