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Introduction

e In the wake of the Global Financial Crisis (GFC) there has been
an increasing interest in understanding the relation between
financial conditions and real activity.

o Growth at Risk (GaR) methodology developed by Adrian et al.
(2019) has been of special interest by policymakers since it
provides a measure of the relationship among macro-financial
variables.

e GaR requires estimating a set of predictive quantile regressions
(QR) where future economic activity (GDP growth) is linked to
current financial conditions, measured through a set of alternative
market or bank related indicators.

o Building on this work, a growing number of countries have
implemented this methodology for financial stability purposes.
Moreover, Superintendency of Banking and Insurance (2019) and
Gondo (2020) have estimated GaR with Peruvian data.
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Introduction

e However, as GaR methodology increased in popularity among
policymakers, recent literature has stressed the need of model
evaluation of GaR results.

e For instance, Reichlin et al. (2020) evaluate the out-of-sample
performance of a GaR model and find little evidence of
predictability beyond what can be achieved using timely indicators
of the real economy.

e Moreover, Brownless and Souza (2020) use a Garch-type model to
forecast the distribution of future economic growth, and compare
their forecasting power against GaR model, finding that a
Garch-type model outperforms a GaR model.
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This paper

@ Our work implements several model evaluation techniques to
increase the accuracy of a Growth at Risk model for the Peruvian
Economy.

e Considering a broad sample of parametric and nonparametric
distributions to fit the GaR results, we use log scoring, probability
integral transform and entropy tests as model evaluation tools to
select the best density forecast that fits Peruvian data.

@ Once we obtain a more reliable GaR results, we use this model to
implement a counterfactual analysis to evaluate the impact of
Reactiva Peru, a government program that support the credit to
firms during the lockdown due the Covid-19 crisis.

@ Our results show that Reactiva Peru had a sizable impact in
macroeconomic and financial stability, since it avoided a much
deeper decrease in economy activity during the covid-19 crisis.
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Growth-at-Risk Model for Peru
The proposed Growth at Risk model for Peru consists of the following

steps:
@ Obtain factors summarizing a broad set of macrofinancial
variables.
Xt Credit market
Xoy Financial market
Xat| Financial strength
Xt | External financial conditions
Xs.¢ Macroeconomic conditions
Y: Current GDP growth

@ Use Quantile Regression (QR) estimation to obtain percentiles of
future GDP growth:

Yqh =¥+ B{X1 4+ BIXos + BIXs 4 + BiXay + B2 X5 + BEY;

@ Use density estimation techniques to obtain a distribution that fits
the quantiles estimated in the previous step.

@ Implement different model evaluation criteria for selecting the
density that best fit the Peruvian data.
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Step 1: Efficient Selection for the factors (X ;)

e We use Orthogonal Projection for Latent Structures (O-PLS) to
estimate a small set of factors.

e Unlike calculating the factors through standard principal
component model (PCA), the O-PLS model allows the correlation
between financial variables and a target variable to be used for
determining the factors, thus increasing their predictive power.

e Monthly data frequency from 31,/08/2005 to 31,/08/2020.

Table: Partition groups (factors) and target variables

Factor Credit Market Financial Market Financial Strength External Financial | Macroeconomic
Conditions Conditions
Target | credit to businesses Credit to businesses Credit to businesses Credit to businesses GDP
Credit to businesses EMBIG CDS Financial Dependence on| Copper VIX Terms of trade
Household credit Return IGBVL  Pension fund ret income external funding| S&P500 Global Inflation

Variables Volatility BVL ~ Spread node 10 Opex Liquid assets/ USA spread Exchange rate

Liquidity BVL Non-resident Net profit Short-term Liab| Spread Index Monetary stimulus
holdings Equity capital
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Step 1: Efficient Selection for the factors (X ;)

Figure: Evolution of the O-PLS factors, X ¢
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Step 2: Quantile Regression (QR) estimation

The Growth at Risk model consists of the following quantile equations:
Y/ Yy =al + B X1+ BIXos + B X3+ + Bi Xy + BE X5 + BiYy

where:

° Y 4+, corresponds to the p-percentile of the projected cumulative
GDP growth in the period t + h.

e X;; corresponds to the factors obtained using O-PLS

X Credit market

Xy Financial market

Xai| = Financial strength

Xy External financial conditions
X5 Macroeconomic conditions

e Y; correspond to GDP growth at period t.

o [3! represents the contribution of factor 7 in the g-percentile
projection of cumulative GDP growth distribution.
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Step 2: Quantile Regression (QR) estimation

Figure: Quantile coefficients of the O-PLS factors 4-month horizon

(Confidence interval at 5%)
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Step 2: Quantile Regression (QR) estimation

Figure: Term structure of Quantile Coefficients for credit market factor

(Confidence interval at 5%)
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Step 2: Quantile Regression (QR) estimation

Figure: Fan chart of QR results
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Step 3: Density fitting

With the conditional quantiles estimated from the QR at each
forecasting period, we fit distributions (pdf) as following:

e Different from Adrian et al. (2019), who are fitting conditional
quantiles, here we work at the sample level, so we have many more
choices of fitting pdfs.

e Obtain a large sample from the interpolation of the estimated
quantiles of GDP growth, following Schmidt and Zhu (2016).

e Use a diverse group of PDFs (non parametric, parametric and

mixture of normal) to fit the sample of conditional forecast of
GDP growth.
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Step 3:

Figure:
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Step 3: Density fitting - Parametric PDFs

Figure: Parametric distribution fitting: selection criteria (4-month ahead)
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Step 3: Density fitting - Mixture of Gaussian PDFs

Figure: Mixture of Normal density fitting (4-month ahead)
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Step 3: Density fitting - Comparison

Figure: Term Structure of Growth-at-Risk
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Step 4: Model evaluation tools

Accuracy test: Log score comparisons via Diebold Mariano

test statistic

Let f(Yyyn) and §(Yiin) two different density forecasts and define S(f, Yiin)

as the score rule of the form:

S(f,Yen) = loglf (Yisn)]
then the log score difference is define as

devn = S(f, Yin) — (3, Yesn)
with the mean score difference as:
| T=h
Admn = Zdt+h with n=T —m

7n -
n
t=m

therefore, it is possible to implement a Diebold-Mariano type of test:

dm,n
= m ~ N(O, 1)

tm,n

where the null hypothesis is that both PDFs have the same accuracy.
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Step 4: Model evaluation tools

Accuracy test: Log score comparisons via Diebold Mariano

test statistic

Table: Log score comparisons (Diebold-Mariano test statistic)

Log Score Diff. test statistic p-value
KDE against Unconditional 3.733 0.000
Parametric against Unconditional 3.722 0.000
Dual Mixture against Unconditional 3.73 0.000
KDE against Parametric 2.672 0.004
Dual Mixture against Parametric 2.988 0.001
KDE against Dual Mixture 0.215 0.415
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Step 4: Model evaluation tools
Probability Integral Transform test

o Let fi(Yiyn) the forecasted density function of a random variable Y;1p,
from Growth at Risk model, then the cumulative density function (CDF)
can be represented as:

Yitn

Fy(Yion) = / fu(z) dz

— 00
Using this CDF, the Probability Integral Transform (PIT) is defined as
the transformation of the random variable Y;p:

Uprn = Fy(Yiqn)

@ Diebold(1998) Demonstrates that the PIT is ¢id if the density forecast is
correctly specified. Then, the sequence of all Uy, is ¢id Uniform (0,1)
and its cumulative distribution is the 45-degree line.

@ Rossi and Shekopysan (2019) considers testing how close is the CDF of
the density forecast to an uniform distribution via a
Kolmogorov-Smirnov (KS) test.
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Step 4: Model evaluation tools

Figure: Probability Integral Transform test
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Growth at risk over time

Having a reliable estimation of GaR model allow us to identify the building
up of vulnerabilities to economic growth in the Peruvian economy.

Figure: Historical evolution of density forecast of GDP Growth
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Counterfactual analysis

Measuring the impact of program to support credit to
business (“Reactiva Pera”)

o "Reactiva Peri“ is a Guarantee Program designed by the Central
Bank and the Ministry of Finance, which allow Central Bank to
provide low cost liquidity to banks to supply loans to businesses
while those loans are guarantee by the Treasury. By providing a
large supply of low cost credit to firms, specially SME, during the
lockdown, this program reduced the impact of the Covid-19 shock
to the Peruvian economy.

e To test this argument we implement a counterfactual scenario
using the GaR Model.
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Design of the counterfactual scenario

The counterfactual path of credit to firms is consistent with the
evolution of credit growth not related to "Reactiva Peru”.

Figure: Counterfactual scenario for credit market variables
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Design of the counterfactual scenario

To map this counterfactual scenario to the credit market factor
included in the GaR model, we run a OLS regression with the credit

market factor against the two credit variables (credit to firms and to
households).

Figure: Counterfactual scenario for credit market factor
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Design of the counterfactual scenario
In order to transfer the shock of the Credit Market factor to the rest of
factors, we followed Kilian (2016) to simulate counterfactual outcomes using a

SVAR model.

Figure: SVAR: Counterfactual Analysis
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Counterfactual Analysis

Results show that without “Reactiva Peru” we could obtain a

significant worse impact in economy activity, no only in terms of lower
expected growth but also in terms of increased risk.

Figure: Density forcast for GDP growth: Counterfactual Analysis
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Concluding remarks

e Growth at risk is a important tool for monitoring macrofinancial
risk since it allow to measure the link between macrofinancial
conditions and future GDP growth distribution.

e However, for the accuracy of the GaR results it is crucial to
implement model evaluation techniques to avoid misleading
interpretation.

o Flexibility of the GaR methodology allows to perform
counterfactual scenario analysis that can help to identify sources
of risks and communicate policy actions.
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