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Abstract 
 

       The aim of this paper is to demonstrate the relative 

performance of combining forecasts on inflation in the case of Tunisia. 

For that, we use a large number of econometric models to forecast 

short-run inflation.  Specifically, we use univariate models as Random 

Walk, SARIMA, a Time Varying Parameter model and a suite of 

multivariate autoregressive models as Bayesian VAR and Dynamic Factor 

models. 

       Results of forecasting suggest that models which incorporate 

more economic information outperform the benchmark random walk 

for the first two quarters ahead. Furthermore, we combine our forecasts 

by means and the finding results reveal that the forecast combination 

leads to a reduction in forecast error compared to individual models. 
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1. Introduction 

Tunisia is gradually moving toward full flexibility of its exchange rate and an inflation 

targeting framework. A successful transition to the regime of inflation targeting depends not 

only on the perquisites for adopting this strategy, but also on the ability to predict inflation. 

Forecasting inflation will become a key task for the Central Bank of Tunisia (BCT). Because of 

the time lags between monetary policy and its effects on the economy, particularly on 

inflation, the BCT will need to base its monetary policy decisions not on past inflation 

outcomes but on inflation forecasts. The precision with which inflation can be forecasted is a 

critical element of the inflation targeting framework. 

The  BCT  uses a large information set coming from expert judgments, which is 

derived using both now-casting tools, and a variety of models ranging from simple 

traditional time series models to theoretically well-structured dynamic stochastic general 

equilibrium models to predict inflation. Our object in this paper is to base medium-term 

forecasts on more accurate and well-performing short-term projections, which rely on the 

maximum information set available. To this end, we use different modelling approaches in 

order to improve the performance of short term projection. 

 Inflation in Tunisia has been moderately volatile, it outperforms a number of other 

Middle Eastern, North African countries, Afghanistan and Pakistan in terms of low inflation 

and it compares favorably to comparator countries, as indicated in Table I. In fact, inflation 

in Tunisia was always below the line representing the average inflation of Middle East, North 

Africa, Afghanistan and Pakistan.   

In this study, we use different modeling approaches in order to provide a rich set of 

short - term model based inflation forecasts and we compare the forecasting performance of 

the various models of inflation. Performance is measured at different forecast horizons 

(mainly one or two quarters ahead). 

We employ various time series models: Bayesian VAR models, Time Varying 

parameters models, unobserved components model and data intensive factors models 

(FAVAR). In addition to the individual forecasting models, we also provide evidence on the 

performance of a simple forecast combination. This forecast combination is computed as the 

simple root mean squared errors weighted average (RMSE). In this methodology, the 

weights are based on the forecast error performances measured by RMSE and a final 

forecast combination is computed by summing the forecasts of individual models multiplied 

by their weights.    

The paper is organized as follows. In the second section, we develop the block of 

model to use for forecasting inflation and the empirical study in which we compare the 

performance of these estimated models generating pseudo out of sample forecast in Tunisia 

and for different horizons. In the third section, we explain the forecast combination 
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procedure used in our short term forecasting practice. In fourth section, we present our 

results and conclude. 

Table I: Consumer Price Index Evolution in Tunisia and sum other comparable countries 

(1980-2016) 

  Mean  

 

Standard-

Deviation 

Min Max 

Algeria 
 

9.054 

 

8.375 

 

0.3 

 

31.7 

Egypt 

 

11.464 

 

6.171 

 

2.4 

 

25.2 

Jordan 
 

4.808 

 

      5.152 

 

    0.9 

 

    25.7 

 

Morroco 
 

3.989 

 

3.465 

 

0.4 

 

12.5 

 

Tunisia 
 

5.259 

 

       2.685 

 

     1.9 

 

     13.7 

 

Middle East, North Africa and Afghanistan  

 

 

8.637 

 

 

3.235 

 

 

  2.7 

 

 

16.5 

 2. Models 

In this section, we use several types of models to forecast short-term inflation for 

Tunisia.  

Standard VAR models are useful since they allow for the interaction of different 

related macroeconomic variables. However, in VAR models, the number of parameters to be 

estimated increases geometrically with the number of variables and proportionally with the 

number of lags included. The BVAR approach limits the dimensionality problem by shrinking 

the parameters via the imposition of priors (the coefficients are shrunk towards prior values, 

reducing the ‘curse of dimensionality’ issue that afflicts classical VAR when the number of 
variables increases). 

In our study, we impose Minnesota-style priors where the priors are specified to 

follow a multivariate normal distribution. The means of the coefficients on first own lags are 

one and the coefficients on the cross lags are zero. 

For our exercise to forecast short-run inflation via BVAR models, we apply pseudo out 

of sample forecasting. In the first step, we divided our sample period: 2000Q1 to 2015Q4 

into two parts.  The first period is the training sample period (2000Q1:2010Q4). The training 
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sample is used to estimate the models throughout the forecasting sample, one to four 

quarters ahead. 

We extend the estimation one period ahead and we collect the forecast at each step 

which are obtained for one to four quarters ahead. This process is repeated until the end of 

pseudo out of sample period.   

  We measure the performance of our forecasting models by calculating the Root 

Mean Squared Error (RMSE): 

𝑅𝑀𝑆𝐸ℎ𝑖 = √∑ (𝑓𝑡 − 𝑟𝑡)22015𝑄4𝑡=2010𝑄4+ℎ𝑇  

Where ℎ = 1, . . . .4 quarters,  𝑖 represents the model, 𝑇 is the out -of-sample size. 𝑓𝑡  denotes 

the forecast and 𝑟𝑡 is the realized annual inflation rate. 

2.1. Empirical study: 

2.1 .1 ARIMA specification model: 

            The first step –as a benchmark –is to assume that inflation cannot be forecasted. Thus, 

no other model can beat a random walk, which implies that the best forecast for future is 

current inflation. The second benchmark is an ARMA model that uses only past inflation 

observations to forecast inflation.  Then we use the forecast from ARMA models allowing the 

disturbances to follow ARMA specification. We estimate the following ARMA (p ,q) model 

that includes both autoregressive and moving average terms: 

𝜋𝑡 = 𝑐 +∑∅𝑖𝜋𝑡−𝑖𝑝
𝑖=1 +∑𝜃𝑗𝑞

𝑗=0 𝜀𝑡−𝑗                       (1′) 
       Where P is the number of lags of autoregressive process and Q is the number of 

lags of Moving average process.     

  The choice of data sample for forecasting inflation is dictated by data availability. The 

data sample analyzed here comprises quarterly observations of consumer price index (CPI) 

from 2000Q1 to 2010Q4. This variable is tested in logarithmic form for nonstationary using 

Phillips-Perron and Augmented Dickey-Fuller. The results of these tests confirm the non-

stationary in level of CPI but it’s integrated in order (1). 

The SARIMA model selection is based on Schwarz criterion to determine the number 

of ARMA terms. Determining the number of ARMA terms is done by specifying a maximum 

number of AR or MA coefficients, then estimating every model up to those maxima, and we 

evaluate each model using its information criterion. 
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The best model’s transformation differencing an ARMA length has been selected 

through information criteria, the model is used to calculate the forecasts. 

The best specification is an SARIMA (4, 0, 1, 3) and the actual inflation is shown by Graphs: 

Figure 1: actual inflation and inflation forecasting  for a one quarter ahead 
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Figure 2: Root Mean Square Error for a one quarter ahead 
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Figure 3: actual inflation and inflation forecasting for two quarters ahead 
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And the forecasting inflation for a long horizon (5 years ahead) is shown by figure 4: 
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Generally, performance of traditional univariate models is not promising for a long 

horizon. Particularly, SARIMA displays a poor performance for a long horizon (4 quarters 

ahead and 5 years ahead), as shown in Figure 4. However, for Tunisia poor performance of 

SARIMA model does not come as a surprise given the lack of information coming from 

macroeconomic variables that are especially important for the inflation dynamic in emerging 

market economies. Moreover, inflation in Tunisia does not present such a stable dynamic. 
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2.1 .2 Estimation of BVAR model: 

We consider the estimation of a bi-variate VAR (2) model using quarterly data on 

annual GDP growth and CPI inflation of Tunisia from 2000Q1 to 2010Q4 (training sample) 

and construct one, two, three and four-step-ahead forecasts. Then the sample is extended 

one period and models are re-estimated. New forecasts are obtained until 2015Q4. Out of 

sample forecast accuracy is measured in terms of RMSE.  

          For estimation, we employ a Minnesota prior which incorporates the belief that both 

variables follow a random walk. While annual CPI inflation is non-stationary and hence the 

random walk prior is reasonable. The model is estimated using the Gibbs sampling algorithm 

and   the quantiles of the predictive density are shown in the figures 5 and 6: 

Figures 5 and 6: Forecasting GDP growth and Inflation with Bayesian VAR 
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Fig 4: GDP Growth Forecasts
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     The Figure 7 displays the inflation forecasts via BVAR approach and their 

corresponding realizations respectively at horizons one-quarter and two-quarters ahead. 

This approach produces a more accurate forecasts when forecasting one-quarter ahead 

inflation compared to two-quarter ahead. Besides, one-quarter-ahead forecasts are 

strikingly close to the realizations. 

Figure 7: Forecasts via Bayesian VAR and realizations 
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One argument developed for these finding results, concerning the accurate forecasts 

for two-quarters ahead, is related with the problem of dimensionality (only two variables as 

Real GDP and inflation) are used as regressors in this estimation. For this reason and in the 

purpose of avoiding this problem of dimensionality, we consider a model of time varying 

parameters model, including much larger set of variables. 
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2.1 .3 Estimation of a Time varying parameter model (VAR)  

           We model the behavior of quarterly consumer prices index inflation, ∆ 𝐥𝐧𝑪𝑷𝑰, the 

quarterly growth rate of unit value prices index, ∆𝒍𝒏𝑰𝑷𝑴, quarterly nominal exchange rate  

,𝑬𝒖𝒓𝒐/𝑻𝑵𝑫  and quarterly exchange rate  𝑫𝒐𝒍𝒍𝒂𝒓 /𝑻𝑵𝑫 .analysis on the stationarity of our 

quarterly series precedes the estimation process. Our sample includes the period from 

2000Q1 to 2015Q4. The augmented Dickey-Fuller unit root test results show that non-

stationarity is rejected at 1% significance level for quarterly inflation. 

Specifically, we consider the following reduced form time varying parameter (TVP) VAR: 

        𝑌𝑡 = 𝑐𝑡 +∑𝛽𝑗,𝑡𝑝
𝑗=1 𝑌𝑡−𝑗 + 𝑣𝑡 

                                                                        𝐸(𝑣𝑡′𝑣𝑡)=𝑅𝑡 𝐸(𝑣𝑡′𝑣𝑠) = 0 𝑖𝑓 𝑡 ≠ 𝑠 𝛽𝑡 = 𝜇 + 𝐹𝛽𝑡−1 + 𝑒𝑡 ,         𝑉𝐴𝑅(𝑒𝑡) = 𝑄 

        Where 𝑌𝑡 is the 4 × 1 vector   (∆ 𝐥𝐧 𝑪𝑷𝑰 ∆𝒍𝒏𝑰𝑷𝑴  𝑬𝒖𝒓𝒐/𝑻𝑵𝑫   𝑫𝒐𝒍𝒍𝒂𝒓 /𝑻𝑵𝑫   )′  𝑣𝑡 is a vector of reduced-form errors, 𝑐𝑡  is a vector of constants and the 𝛽𝑗,𝑡 s are matrices of 

coefficients. We assume that Tunisia is ‘small’ in the sense that movements in TU variables 
have no effect on world variables. The Gibbs sampling algorithm can be discerned by 

noticing that if the time-varying coefficients 𝜷𝒕 are known, the conditional posterior 

distribution of 𝑹 is inverse Wishart. Similarly, conditional on 𝜷𝒕  the distribution of Q is 

inverse Wishart. Conditional on 𝑅 and 𝑄  and with assumption that 𝜇 = 0    and 𝐹 = 1 the 

model is a linear Gaussian State space model (appendix B). 

Figure 8: forecasts via Time varying parameters models 
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When forming the forecasts, we compare the simple OLS (characterized by a 

constancy of the parameters of the model) with last estimates of βs and with the last 4 

quarter estimates of β. We prefer using averages of the last four quarter estimates of βs to 

ensure some persistency; the approach of TVP is very robust to some form of structural 

change, such as intercept shifts.  

2.1.4. Estimation of a FAVAR model 

        Factor models exploit the fact that macroeconomic and financial time series are 

characterized by strong correlations. Under the assumption that most of fluctuations are 

driven by relatively limited set of common sources. Factor models offer a parsimonious 

representation by summarizing the information from large number of data series in a few 

common factors. Dynamic factor models parameterize the dynamics of the factors further, 

typically assuming VAR process. The estimation of factor models generally requires the data 

to be stationary. Assuming that stationarity is achieved via tacking the first differences.  

Our model is based on the Factor Augmented VAR introduced in Bernanke et al 

(2005). The FAVAR model can be written as: 

 𝑋𝑖𝑡 = 𝑏𝑖𝐹𝑡 + 𝛾𝑖𝑇𝑀𝑀𝑡 + 𝑣𝑖𝑡   (1’) 𝑍𝑡= 𝑐𝑡 + ∑𝛽𝑗 𝑍𝑡−𝑗 + 𝑒𝑡              (2′) 
                                                           𝑍𝑡 = {𝐹𝑡|𝑇𝑀𝑀𝑡}                           (3’) 𝑣𝑎𝑟(𝑣𝑖,𝑡) = 𝑅, 𝑣𝑎𝑟(𝑒𝑡) = 𝑄     (4′)       

 

Where 𝑋𝑖,𝑡  is a (𝑡 × 𝑚) matrix containing a panel of macroeconomic and financial 

variables. 𝑇𝑀𝑀𝑡 denotes the market interest rate and 𝐹𝑡 are the unobservable factors which 

summarize the information in the data 𝑋𝑖,𝑡.  the first equation (1’) is the observation 
equation of the model while the second one is a transition equation. Bernanke et al (2005) 

consider a shock to the interest rate in the transition equation and calculate the impulse 

response of each variable in 𝑋𝑖𝑡 . 
  We estimate a FAVAR model using Tunisian Data over the period 2000Q1 to 2015Q4. 

We use 30 Macroeconomic and Financial time series to estimate and predict inflation. (Real 

GDP, Real  Consumption, Government Consumption, Real Exports, Real Imports, commodity 

prices, consumer prices index, components of prices index, Nominal exchange rates and 

Monetary market rate) (Table 2 provides the details of the data). 
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Table2: Variables in Dynamic Factor FAVAR model 

Category   Variables       

Real activity measures 
Real exports(sa), Real imports(sa), 

investment(sa),  

  
Private consumption(sa), Governement 

consumption(sa), RGDP(sa), 

 

 

 

 

Infaltion components 

index prices_clothes, index 

prices_goods_services, index 

prices_communication, 

  

 

index prices _energy, index 

prices_education, consumer prices 

index_all, 

  

 

consumer prices without food, core 

inflation, consumer prices without 

energy,  

  

 

prices_culture, prices_health, 

prices_hotel, prices_transports. 

  

    

  

Monetary Indicators 

 

Monetry aggregates(M3)(sa), credit to 

economy(sa), foreign assets,  

  

 

Reserve money(sa),  interest rate. 

  

    

  

Exchange rates 

 

Euro/TND, USD/TND. 

 

  

  

    

  

Note:"sa" refers to seasonally adjusted series.       

 

        We include three common factors in the FAVAR, which are meant to capture roughly 

the information on real developments, prices and interest rates. Furthermore, impulse 

responses of principal components are obtained in figure 9. 
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Figure 9: Impulse responses of principal components 
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Table3 

  Correlation coefficients   

Principal Components Variables Correlations Bloc 

PC1 

CPI_inflation 0.36 

Inflation components 

Core_inflation 0.36 

IPC_food 0.36 

IPC_Energy 0.35 

IPC_Meubles 0.29 

IPC_alimentaires 0.2 

ipc hotelerie 0.24 

ipc _clothes 0.24 

PC2 

exports 0.42 

Real activity economy imports 0.42 

investment 0.42 

PC3 
M3 0.46 

Monetary indicators 
M0 0.49 
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   Table 3 presents the correlation between the principal components and some of the 

variables in the dataset. From the table, the first component (PC1) tends to describe the 

inflation components, while the second component (PC2) is related to the real variables as 

exports, imports and investment. The third one describes the monetary indicators (nominal 

variables). 

Note that one of advantages of FAVAR approach is that the impulse response 

functions can be constructed for any variable in the informational data set, that is, for any 

variable of matrix 𝑋𝑡.  This gives both more information and provides more comprehensive 

check on the empirical plausibility of the specification.  

The Figure 9 shows the impulse responses with 95 percent confidence intervals of a 

selection of principal components to a monetary policy shocks. The responses are generally 

with expected sign and magnitude.  Following a contractionary monetary policy shock, prices 

eventually go down, real activity measures decline and monetary aggregates decline. After 

one year, an increase of 1% of money market rate (TMM) results a decrease of inflation 

about 0, 8%. While real variables, react negatively. Finally, monetary aggregates respond 

negatively at the short run.                                                                                                                                                    

In the next step, we use these factors to forecast quarterly inflation. For the FAVAR 

forecasting, we build  a FAVAR model  and we name it FAVAR01  with the lag order of one by 

using these repetitive factors and inflation forecasts are formed from the projection of the 

linear single equation where quarterly inflation rate is a function of projected factors: 𝝅𝒕+𝒉 = 𝝁 + 𝜷(𝑳)𝒇𝒕+𝒉 + 𝜶(𝑳)𝑿𝒕 + 𝒗𝒕+𝒉          (𝟓′)  
Where 𝝁   is a constant,  𝒇𝒕  is estimated factors, 𝜷𝑳 and 𝜶𝑳 are vectors of lag 

polynomials and 𝑋𝑡 is the vector of exogenous variables (i.e. seasonal dummies). Then we 

obtain 𝒉 − 𝒔𝒕𝒆𝒑 𝒂𝒉𝒆𝒂𝒅  predictions for inflation. Therefore, FAVAR forecasting is based on 

the same properties introduced in the VAR approach. The only difference is that we used 

only the estimated factors as endogenous variables while exogenous variables remain the 

same. 3. Forecast combination  
       Timermann (2006) argues that it is critical to identify whether or not the information 

sets underlying the individual forecasts are observed by the forecast user. If so, it would be 

appropriate to pool all the information  and construct a “super” model nesting each of the 
individual forecasting model  Also, Bjorland et al (2008) argue that usual analytical 

techniques may not be suitable for combined information set since the number of regressors 

may be large relatively to the sample size. Under these conditions, the best way to exploit 

information from different forecasters is to combine their forecasts. Therefore, combination 

methods have gained even more ground in the forecasting literature. 
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            Empirical evidence suggests that combining forecasting systematically perform better 

than alternative based on forecasts from a single model. Different forecasting models are 

combined using equal, fit-based weights and compared with the multivariate and random 

walk benchmarks. 

          As contrary to trimming approach, root mean squared averaging model is based on 

the forecast error performance measured by (RMSE). A model with lowest RMSE receives 

the highest weight of this approach. The former method use RMSE of each model calculated 

for the Pseudo out of sample period. 

3.1. Forecast Evaluation 

The quality of the forecasts is evaluated by the relative RMSE (RRMSE), which is the 

ratio of the  RMSE of a model or combination method to the RMSE of the benchmark.  The 

(RRMSE)  is calculated at each forecast horizon ℎ as follows. 

𝑅𝑅𝑀𝑆𝐸ℎ = √∑ (𝑓𝑡𝑚 − 𝑟𝑡)22015𝑞4𝑡=2010𝑄4+ℎ∑ (𝑓𝑡𝑏2015𝑄4𝑡=2010𝑄4+ℎ − 𝑟𝑡)2  

Where ℎ = 1 . . .4 quarters, 𝑓𝑡𝑚 represents the forecast of a model or combination 

method,  𝑓𝑡𝑏 shows the forecast of the benchmark and 𝑟𝑡 stands for the realized value of 

quarterly inflation rate. 

Table 4:  RMSE relative to the Random Walk Benchmark 

 

                    h=1 

     

h=2                        h=3                        h=4 

Individual Model Forecasts 

Random walk      2.07 1.18 1.2 1 

SARIMA 0.96 0.99 1.27 1.38 

BVAR 0.73 0.79 0.81 0.9 

TVP 0.64 0.74 0.79 1.11 

FAVAR 0.59 0.66 0.65 1.05 

Forecast combination  

RMSE 0.34 0.54 0.55 0.62 

 

Trimmed average  0.47 0.61 0.68 0.75 
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Figure 10: RMSE for individual models 

 

 

      Table 4 suggests that individual models provide better inflation forecasts relative to 
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reverting in the long run and inflation targets form a natural anchor in low inflation 

economies. The gains are clearly evident for the FAVAR, TVP-VAR and BVAR, which forecast 

1 quarter and 2-quarter ahead inflation are better compared to 3 and 4 quarters ahead. 

       The best forecasts are provided by the FAVAR model. However performances of this 

factor-based model change across horizons and the gains are not quantitatively noticeable 

most of the time. 

     On the other hand, combining forecasts improves the forecast accuracy compared to 

the benchmark. Then forecast combination yields a superior performance. All forecasts 

combinations have Relative RMSE less than 1 for the four quarters ahead. The poor 

performance decreases as the horizon grows. In fact, the best combination scheme is the 

RMSE weights since it gives lowest relative root mean square at all horizons. 
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4. Conclusion 

      In this paper we propose modelling and forecasting inflation in Tunisia for short-run 

by using a large number of econometric models.  

We proceed with a panel of models including univariate models, a Philips curve 

motivated time varying parameters model, a suite of BVAR, FAVAR models. Furthermore, 

root mean squared weights methods are implemented to combine individual model 

forecast.  

The findings of the study illustrate that individual models incorporating more 

economic information perform better than the benchmark random walk model at least up to 

two quarters ahead forecasts. Those models exploit larger data sets, which are likely to 

involve more information about inflation compared to a data set used by any single equation 

model. In particular, FAVAR model appears to fit the data well, it consistently outperforms 

the benchmark at all forecasting horizons.  

Despite the favorable gains under individual models, there is a scope for 

improvement from combinations strategies. Forecast combination reduces forecast error 

compared to individual models and slightly improves on the FAVAR when RMSE weighting 

scheme is adopted. 
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Appendix (A) 

Bayesian estimation, forecasting and Fancharts: 

Bayesian VAR model (BVAR) with Gibbs sampling algorithm: 

For the BVAR models, we consider the following linear regression: 𝑌𝑡 = 𝛽𝑋𝑡 + 𝑣𝑡, 𝑣𝑡  ~𝑁(0, 𝜎2)       𝑡 = 0,……… . . 𝑇    (1) 

The aim of this section is to estimate model coefficients,  𝛽. In the classical world, we 

use information contained in data by maximizing the following likelihood function: 𝐹(𝑌 𝐵)⁄ = (2𝜋𝜎2)−𝑇/2 exp ( −12𝜎2 (𝑌𝑡 − 𝛽𝑋𝑡)′(𝑌𝑡 − 𝛽𝑋𝑡))   (2) 

And we obtain the classical 𝑂𝐿𝑆 estimator: 𝛽̂𝑜𝑙𝑠=(𝑋′𝑡𝑋𝑡)−1𝑋′𝑡𝑌𝑡     (3) 𝜎2̂ = 𝑣′𝑡𝑣𝑡𝑇     (4) and  𝑣𝑎𝑟(𝛽̂)=𝜎2(𝑋′𝑡𝑋𝑡)−1 (4) 

In the Bayesian approach, we simply combine the information contained in data with 

our beliefs. We are interested in the posterior distribution, which is defined by Bayes 

theorem: 𝐻(𝐵 𝑌⁄ ) =  𝐺(𝑌,𝐵)𝐹(𝑌) =
𝐹(𝑌 𝛽) 𝑃(𝛽)⁄𝐹(𝑌)          (5 ) 

 𝐹(𝑌) is the density of the data (marginal data density), which is a scalar. Therefore, 

we can write the following: 

 𝐻(𝐵 𝑌⁄ ) ∝ 𝐹(𝑌 𝛽) 𝑃(𝛽)⁄        (6)   
 

The posterior distribution is proportional to the likelihood (information contained in 

data) times the prior (our beliefs). In practice, the estimation is based on three steps: 

Gibbs sampling algorithm for the VAR model: 

The Gibbs sampling algorithm for the VAR model consists of the following steps: 

 Step1: Set priors for the VAR coefficients and the covariance matrix.  The prior for the 

VAR coefficients is  normal and given by : 𝑝(𝑏)~𝑁(𝑏0, 𝐻) 
The prior for the covariance matrix of the residuals ∑ is inverse Wishart and given 

by  𝐼𝑊(𝑆̅,𝛼). Set a starting value for  ∑  (𝑏𝑦 𝑜𝑙𝑠 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛). 
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 Step2:  We combine our prior belief, 𝑃(𝐵), with information about the model 

parameters contained in the data  𝐹(𝑌 𝐵)⁄ , so we obtain the posterior distribution. 

 

In reality,  𝐵  and 𝜎2  are unknown parameters, so we have to calculate joint posterior: 𝐻(𝐵, 𝜎2 𝑌⁄ ) ∝ 𝐹(𝑌 𝛽, 𝜎2) 𝑃(𝛽, 𝜎2)⁄  

 The joint prior: 𝑃(𝛽, 𝜎2) = 𝑃(𝛽 𝜎2) × 𝑃(⁄ 𝜎2) 
 To make inference, we need the marginal distributions, for example make inference about  𝛽  we need: 

𝐻(𝛽 𝑌𝑡⁄ ) = ∫ 𝐻(∞
0 𝛽, 𝜎2 𝑌𝑡⁄ ) 𝑑𝜎2 

             Obtaining marginal posterior distribution requires integration.  For integration step, 

we use a simulation method “Gibbs sampling” «that uses draws from conditional distribution 

to approximate the marginal one. 
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Appendix (B) 

The time varying parameter model 

In the case of structural change, statistical forecasting methods that incorporate 

parameter instability such as rolling regressions or time varying parameters (TVP) models 

might perform better than other models. 

In the TVP models, we allow the model parameters to vary over time contrary to the 

standard models. The linear regression model with time varying parameters:                 𝑦𝑡 = 𝜇𝑡 + 𝛽𝑡𝑥𝑡 + 𝑒𝑡   𝑒𝑡~𝑁(0, 𝜎𝑒2)                𝜇𝑡 = 𝜇𝑡−1 + 𝑤𝜇,𝑡         𝑤𝜇,𝑡 ~ 𝑁(0, 𝜎𝜇2 )                 𝛽𝑡 = 𝛽𝑡−1 + 𝜔𝛽,𝑡         𝜔𝛽,𝑡~𝑁(0, 𝜎𝛽2) 
Once, the model has been put in state space form, the Kalman filter may be applied 

to get the time varying  𝜇𝑡 and  𝛽𝑡  state space model for an 𝑦𝑡 consists of two equations , 

namely measurement and transition equations. 

Measurement equation relates the observed data to unobserved state vector 𝛼𝑡  
where transition equation describes the evolution of the state vector over time: 𝑦𝑡 = 𝑍𝑡𝛼𝑡 + 𝑑𝑡 + 𝑒𝑡                      𝑡 = 1,…………𝑇 

Where 𝑦𝑡 is containing N elements, 𝛼𝑡 is 𝑚 × 1 vector, 𝑍𝑡 is a 𝑁 ×𝑚  matrix, 𝑑𝑡 is an ( 𝑁 × 1)  vector of serially uncorrelated disturbances with zero mean and covariance 

matrix 𝑄𝑡, that’s : 𝐸(𝑤𝑡) = 0    and   𝑉𝑎𝑟(𝑤𝑡) = 𝑄𝑡. 𝐸(𝑒𝑡𝑤𝑠′) =0 for all s, t=1 ...T. 

The initial state vector, 𝛼0, has a mean of 𝑎0  and covariance matrix 𝑃0. The matrices  𝑍𝑡, 𝑑𝑡 , 𝐻𝑡, 𝐶𝑡, 𝑅𝑡  and 𝑄𝑡 are called the system matrices. For the linear regression model, we define 𝛼𝑡=(𝜇𝑡, 𝛽𝑡)′, then state space form of the time varying parameter regression model can be 

written as: (𝜇𝑡𝛽𝑡)⏟𝛼𝑡 =(1 00 1)⏟    𝑇 (𝜇𝑡−1𝛽𝑡−1)⏟  𝛼𝑡−1 +(𝑤𝜇,𝑡𝑤𝛽,𝑡)⏟  𝑤𝑡  

With  { 
 𝑣𝑎𝑟(𝑤𝑡) = 𝑄 = (𝜎𝜇2 00 𝜎𝛽2)𝑦𝑡 = (1 𝑥𝑡) (𝜇𝑡𝛽𝑡) + 𝑒𝑡, 𝑣𝑎𝑟 (𝑒𝑡) = 𝐻 = 𝜎𝑒2 
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If 𝜎𝜇2 = 𝜎𝛽2 = 0  then it’s just a fixed coefficient linear regression model. For 

computing the optimal estimator of the state vector at time t, we use the Kalman filter 

defined as a recursive algorithm based on the information available at time t. This 

information consists of the observations up to and including 𝑌𝑡 = (𝑦1, …… . . 𝑦𝑡) (Harvey, 

1990). 

In fact, the system matrices together with 𝑎0 and  𝑃0 are assumed to be known in all 

time periods and there are two sets of equations in the Kalman filter, these are prediction 

and updating equations. 

Then the optimal estimator of 𝛼𝑡 is given by the prediction equations are: 𝑎𝑡 𝑡⁄ −1 = 𝑇𝑡𝑎𝑡−1 + 𝑐 𝑡𝑃𝑡/𝑡−1 = 𝑇𝑡𝑃𝑡−1𝑇𝑡′ + 𝑅𝑡𝑄𝑇𝑅𝑡′}        Prediction equations 

 

Let  𝑎𝑡 𝑡⁄ −1 = 𝐸(𝛼𝑡|𝑌𝑡−1) and 𝑃𝑡/𝑡−1=𝑣𝑎𝑟(𝛼𝑡/𝑌𝑡−1). Once the new observation, 𝑦𝑡,becomes available, we can correct or update the estimator of 𝛼𝑡, 𝑎𝑡 𝑡⁄ −1. 𝑎𝑡 = 𝑎𝑡 𝑡⁄ −1 + 𝐾𝑡 (𝑦𝑡 − 𝑍𝑡𝑎𝑡 𝑡⁄ −1 − 𝑑𝑡)⏟            𝑣𝑡     𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟   𝑃𝑡 = 𝑃𝑡/𝑡−1 − 𝐾𝑡𝑍𝑡𝑃𝑡/𝑡−1𝐾𝑡 = 𝑃𝑡/𝑡−1𝑍𝑡′𝐹𝑡−1 𝑎𝑛𝑑 𝐹𝑡 = 𝑍𝑡𝑃𝑡/𝑡−1𝑍𝑡′ +𝐻𝑡}  
  

  Updating equations 

Where  𝐾𝑡 is the Kalman gain whereas 𝐹𝑡 is a prediction error variance, that’s   𝐹𝑡 =𝑣𝑎𝑟(𝑣𝑡). So 𝑎𝑡 = 𝐸(𝛼𝑡 𝑦𝑡⁄ )  and 𝑝𝑡 = 𝑣𝑎𝑟(𝛼𝑡/𝑦𝑡). 
 

 Step 1: Set a prior for 𝑅 and 𝑄 and starting values of the Kalman filter. The prior for Q 

is inverse Wishart 𝑝(𝑄)~𝐼𝑊(𝑄0, 𝑇0). this prior is quite crucial as it influences the 

amount of time variation allowed for in the VAR model. In fact, a large value for the 

scale matrix  𝑄0, would imply more fluctuations in  𝛽𝑡 .  This prior is set using a 

training sample. The first  𝑇0 observations of the sample are used to estimate a 

standard fixed coefficients VAR via OLS such that 𝛽0 = (𝑋0𝑡′ 𝑋0𝑡)−1((𝑋0𝑡′ 𝑌0𝑡) with a 

coefficient covariance matrix given by  𝑝0/0 = ∑    (𝑋0𝑡′0 𝑋0𝑡)−1  where 𝑋0𝑡={𝑌0𝑡−1, …… . 𝑌0𝑡−𝑃,1}, ∑0 = (𝑌0𝑡−𝑋0𝑡𝛽0)′(𝑌0𝑡−𝑋0𝑡𝛽0)𝑇0−𝐾  and the subscript 0 denotes 

the fact that this is the training sample. The scale matrix  𝑄0 is set equal to 𝑝0/0 × 𝑇0 × 𝜏  where   𝜏  is a scaling factor. 

 Step2: sample 𝛽𝑡̃ conditional on R and Q from its conditional posterior distribution 𝐻((𝛽𝑇|𝑅, 𝑄, 𝑌𝑡̃ ) where 𝛽𝑇=[𝑣𝑒𝑐(𝛽1)′ 𝑣𝑒𝑐(𝛽2)′……… 𝑣𝑒𝑐(𝛽𝑇)′]  and  𝑌𝑡̃ =[𝑌1, ………𝑌𝑇]. This is done via the Gibbs sampling algorithm. 
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 Step3: sample 𝑄 from its conditional posterior distribution. Conditional on  𝛽𝑡  the 

posterior of Q is inverse Wishart with scale matrix (𝛽𝑡1 − 𝛽𝑡−11 )′ (𝛽̃𝑡1 − 𝛽𝑡−11 ) + 𝑄0 and 

degrees of freedom 𝑇 + 𝑇0 where 𝑇 denotes the lenght of the estimation sample and 𝛽𝑡1 is the previous draw of the state variable 𝛽̃𝑡 .  

 Step 4: Sample 𝑅 from its conditional posterior distribution. Conditional on 𝛽𝑡1the 

posterior of 𝑅 is inverse Wishart with scale matrix (𝑌𝑡 − (𝑐𝑡1 +∑ 𝛽1𝑗,𝑡𝑃𝑗=1 𝑌𝑡−𝑗))′ (𝑌𝑡 − (𝑐𝑡1 + ∑ 𝛽1𝑗,𝑡𝑃𝑗=1 𝑌𝑡−𝑗)) + 𝑅0 and degrees of freedom  𝑇 + 𝑣𝑅0. 

 Step 5: Repeat steps 2 to 4 𝑀 times and use the last 𝐿 draws for inference. This state 

space model requires a large number of draws for convergence.(e .g 𝑀 ≥ 100000). 
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