

UIP with FX interventions under exchange rate peg and inflation targeting: The case of Ukraine

BCC 8th annual conference

Anton Grui

The views expressed in this presentation are those of the author and do not necessarily represent the views of the National Bank of Ukraine

Summary

- The study modifies an uncovered interest parity (UIP) condition in a semi-structural New Keynesian model with a view to account for exchange rate management by the National bank of Ukraine (NBU)
- Foreign exchange (FX) interventions cushion small open economies against excessive exchange rate fluctuations. Modeled deviations from the pure UIP help assess their effectiveness and the role in stabilizing prices
- Moderate amounts of FX interventions help stabilize both exchange rate and prices. But the exchange rate must remain floating to serve as a monetary policy transmission channel. Aggregate demand is inelastic to the degrees of exchange rate management
- Sterilized FX interventions under IT are more effective than non-sterilized ones under the fixed exchange rate regime

The NBU abandoned fixed exchange rate and adopted IT in 2015 during a "perfect storm". Ukraine is vulnerable to external shocks

The model

- Semi-structural New-Keynesian "in gaps" model of a small open economy
- Similar models are used by many central banks
 - Beneš, J., Clinton, K., George, A., Gupta, P., John, J., Kamenik, O., Laxton, D., Mitra, P., Nadhanael, G.V., Portillo, R., Wang, H., Zhang, F. (2017). Quarterly projection model for India: key elements and properties. IMF Working Papers, 17/33. International Monetary Fund.
- Standard structure with Ukraine specific extensions
 - Open economy IS curve, Phillips curve with expectations, Taylor-type reaction function, hybrid UIP
- Coefficients are estimated with Bayesian techniques separately on the 2006–2014 and 2015–2020:Q1 horizons
 - Strong exchange rate channel to inflation, limited policy transmission to aggregate demand

Hybrid uncovered interest parity

- spot nominal exchange rate in log (up is depreciation)
- risk adjusted interest rate differential (premium is spread between yields on UA Eurobonds and 10y US T-bonds)

$$s_t = s_{t+1} + interv_t + \frac{1}{4}(i_t^* - i_t + prem_t) - \gamma_4 \widehat{tot}_t + \varepsilon_{4,t}$$

- interventions (in terms of impact) are endogenously defined with a view to smooth exchange rate volatility
- willingness to intervene rises with the degree of exchange rate management

1

- commodity terms of trade (gap) influence the exchange rate in an economy with a large share of commodities in trade
- interventions are applied when current and/or expected exchange rate devaluation deviate from a parity-implied value

$$interv_t = \frac{\beta_5}{4} \left((\Delta s_t^P - \Delta s_{t+1}) + (\Delta s_t^P - \Delta s_t) \right)$$

 parity-implied value represents relative purchasing power parity, when adjusted for a real exchange rate trend

$$\Delta s_t^P = \Delta \bar{z}_t + \pi_t^T - \pi_t^{*,T}$$

Moderate exchange rate management reduces inflation volatility, but stronger management exacerbates it

Model implied unconditional standard deviations (2015–2020:Q1 parametrization)

	Nominal exchange rate deviations from parity	Model implied interventions	Output gap	Inflation	Policy interest rate
	$\Delta s_t - \Delta s_t^P$	interv _t	\hat{y}_t	π_t	i_t^P
$\beta_5 = 0$	1.32	0.00	1.00	1.07	1.16
$\beta_{5} = 0.57$	1.00	1.00	1.00	1.00	1.00
$\beta_5 = 1$	0.64	1.16	1.00	1.08	1.32
$\beta_5 = 100$	0.01	1.24	0.99	1.22	2.01

Source: own estimates Note: values are normalized for each variable to a baseline estimated case of 0.57

Ш

 β_5

- FX interventions in 2015–2020:Q1 prevented the exchange rate from being 32% more volatile. They also stabilized inflation
- Further 36% reduction in exchange rate volatility would have been associated with 8% less stable inflation and 32% more active policy interest rate
- Output gap volatility respond little to changes in the exchange rate management

Systematic deviations from the UIP to a large extend can be explained with strong and lasting effect of FX interventions

Model simulated interventions regressed on observed series

Dependent variable: model simulated effect of interventions

Dependent variable: model simulated effect of interventions		e in % ventior one in
Variable	Coefficient	ו ns ar inter uals %. *
actual FX interventions	2.96***]	T FX I L
actual FX interventions (-1)	2.80***]	0.17 terve
dummy0614*actual FX interventions	-1.51	es ed int itte, a imm
dummy0614*actual FX interventions (-1)	-2.24***	imat ulate je ra o, du
dummy0614	0.50	i esti sim dang GDI GDI
constant	-1.51*	owr odel lexc nual
R-squared	0.62	urce: e: m ninal of anu
Observations (2006–2019)	56	Sot Not Non 201

- 0.17% of GDP (USD 273 million in 2019) worth of interventions are required to nudge the exchange rate in a necessary direction over the course of two guarters
- Interventions under IT in 2015–2020:Q1 are three times stronger than they used to be in 2006–2014 under the fixed exchange rate regime

rentions are in

e in % of

2006

Appendix: Impulse response functions to the demand shock for various betas under the 2015–2020:Q1 parametrization

