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Abstract

In this paper we select an appropriate univariate time series model for forecasting

monthly time series of foreign reserves. The paper considers both, a standard procedure

for seasonal unit root testing as well as extended procedures with endogenous determi-

nation of structural breaks, coupled with simulation exercises to obtain critical values

for the tests. Empirical evidence lends no support to the hypothesis that the series

contains seasonal unit roots. The best model in terms of forecasting performance by

various criteria is fitted to the series in first differences and forecasts produced.
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1 Introduction

In this paper we fit an appropriate univariate time series model to CBBH foreign re-
serves data for forecasting purposes. Namely, the foreign reserves represent one of the most
important macroeconomic indicators in Bosnia and Herzegovinas economy, especially in the
context of a monetary policy strategy —currency board —implemented in the country. This
is one of the key variables for the functioning of automatic adjustment mechanism of the
currency board that facilitates constant balancing of the economic processes and restoring
external and internal equilibrium. For those reasons, knowing current levels of the foreign
reserves and their future developments through forecasting exercises is of essential impor-
tance for maintaining macroeconomic and financial stability of the economy, as well as for
the process of foreign reserves management in the central bank.

Descriptive analysis, coupled with formal seasonality test, indicate that both determin-
istic and stochastic seasonality could be present in the data. Depending on the type of
seasonality present, various approaches to modelling seasonality could be taken. If seasonal
patterns are stable or repetitive, regression approaches with the introduction of seasonal
dummy variables may be implemented to describe its behavior. On the other hand, if
innovations have cumulative or persistent effects that change or introduce a new seasonal
pattern, a different approach that takes stochastic seasonality into account needs to be taken.
In that respect, formal investigation whether unit roots are present in the long run (at zero
frequency) and/or in each of the seasons is taken by applying a standard battery of unit root
tests coupled with the HEGY seasonal unit root test. Possible structural breaks in the series
have been treated using unit root tests with endogenous determination of the breaks, both at
zero frequency (Zivot-Andrews, 1992 and Clemente, Montanes and Reyes, 1998) and other
frequencies of monthly data (modified HEGY tests with endogenously determined structural
breaks based on innovational outlier model). Finally, formal steps in the Box-Jenkins (1970)
methodology are conducted to determine the structure of the models that best fit the series
in terms of its trend, cycle and irregular components.

With the aim of determining basic characteristics of the series in terms of possible pres-
ence of the stochastic trend and the characteristic of the stochastic seasonality in the data,
the HEGY seasonal unit root test has been applied. Towards that end, the critical values
used in the testing procedure for inference have been obtained by Monte Carlo simulations
to increase the precision of the test for this particular series. It is observed that resulting
critical values are similar to those available in the literature for the series with the simi-
lar length (number of observations) and structure with respect to deterministic component.
Since visual inspection of the series indicates presence of the structural breaks, the HEGY
test has been modified to explicitly take them into consideration. The results offer evidence
for the presence of the stochastic trend at zero frequency and no seasonal unit roots (no
conclusive evidence for seasonal unit roots at bimonthly and other frequencies) so there is
no need for transforming the series by seasonal differencing. Accordingly, the first difference
of the series is used in the formal econometrical analysis for obtaining a model with the best
forecasting performances.

Finally, a horse race in terms of the forecasting performances of the candidate models
is carried out applying a battery of tests and taking into consideration different criteria to
obtain the best model. The model is used to produce forecast of the foreign reserves in
Bosnia and Herzegovina in the form of a fan chart.

The outline of the paper is following. The first section gives introductory comments on
the aim of the paper and the methodology used. The second section presents a brief descrip-
tion of the main characteristics of the data with accompanying descriptive analysis. The
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unit root testing procedures of the foreign reserves series and its outcomes are explained in
the third section. The fourth section considers the forecasting procedure and characteristics
of the alternative model specifications and provides (the best) forecasts of the series. The
last section presents concluding remarks.

2 The main characteristics of the foreign reserves

The foreign reserves are one of the most important macroeconomic indicators in an econ-
omy. IMF (2013) defines foreign reserves as those external assets that are readily available to
and controlled by monetary authorities for meeting the balance of payments financing needs,
intervention in exchange markets to affect the currency exchange rate and other related pur-
poses (confidence in the currency and the economy, basis for foreign borrowing). However,
it needs to be emphasized that the specific form of monetary policy strategy implemented
in Bosnia and Herzegovina excludes some of those possible uses.1

2.1 The role of foreign reserves in domestic economy and the fac-

tors that affect data generating process

This variable lays at the heart of an (orthodox) currency board as a form of monetary
policy strategy. Accordingly, most of the variations in the foreign reserves in Bosnia and
Herzegovina are related to the functioning of the automatic adjustment mechanism of the
currency board, a basic mechanism of the strategy that enables accommodation of the main
domestic macroeconomic variables in the economy to developments in its balance of pay-
ments. Namely, a balance of payments deficit causes capital outflow from the country and
a proportional reduction in the money supply in the economy. The basic principles of the
currency board of the full backing of monetary liabilities by the foreign reserves and the
full convertibility of domestic currency into foreign and vice versa dictate that the foreign
reserves changes are one for one reflected in the changes of the money supply (monetary
base). A decrease in the money supply leads to a domestic interest rates increase, reduction
in aggregate demand and real exchange rate depreciation. The money supply contraction
decreases labor force and other factors of production demand, causing a decline in domestic
prices in comparison to foreign prices. All this movements contribute to reaching a new
balance. The reverse happens in the case of a balance of payments surplus. This mechanism
is expected to essentially generate cyclical or truly stochastic developments in the foreign
reserves series that in a formal analysis may be represented as irregular or stochastic season-
ality processes.

On the other hand there are one off events that affect foreign reserves series in a semi
deterministic way since most of them are known or arranged in advance, before they actu-
ally happen. They may be considered as a form of shocks to the series, since they cause
its significant increase or decrease at a time of their occurrence. Those events include, for
instance, euro conversion, IMF standby arrangement tranches payments, selling off major
companies to foreign investors, foreign credits, grants and other major capital inflows, for-
eign debt servicing etc. From the perspective of one particular point in time those events
may be considered deterministic, but from the perspective of the overall economy, they could
be treated just as manifestations of the stochastic processes of its functioning. Accordingly,
in a regression analysis, these shocks could be treated by the introduction of the dummy
variables, or left unchecked if they do not cause undesirable characteristics of the series that

1E.g. intervention in the exchange markets to affect the exchange rate of domestic currrency.
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complicate the estimation and inference.

Deterministic seasonality can be expected to explain some part of the variation observed
in the series. There are several factors that could generate the deterministic seasonality in
the foreign reserves data. For example, an increase in money remittances can be observed
during summer months when diaspora comes back to the country for a summer vacation.
Additionally, commercial banks close their open foreign exchange positions towards the end
of the year through buying foreign currency (mainly euro) from the Central bank in exchange
for domestic currency to observe strict banking agencies’ rules on the net open foreign cur-
rency positions. Normally, the reverse operations are conducted at the beginning of the
year.

2.2 The data

In this paper we analyze and forecast the monthly series of the Central Bank of Bosnia
and Herzegovina’s (CBBH) foreign reserves. The data are taken from the official statistics
of the Bank. The foreign reserves series is presented in figure 1. The time series starts with
the June 1999 and ends with the March 2016 making overall 202 observations. The values
of individual data are given in the domestic currency (KM) equivalents.

Figure 1: CBBH foreign reserves

The series exhibits a clear (stochastic or deterministic) upward trend, with a noticeable
change in the trend in 2008 when the effects of the financial crisis started to appear in Bosnian
economy as well as a subsequent pickup in growth and resultant increase in the slope of the
trend from 2012 onwards. The dominance of the upward trend indicates non-stationarity
of the series in levels. Figure 2 shows the logarithm of the CBBH foreign reserves series in
levels. The logarithmic transformation of the series is performed to diminish its volatility
and dampen the magnitude of the fluctuations (Enders, 2010). The figure shows a constant
upward movement of the series, suggesting its non-stationarity. The second important feature
of the series in this figure is a relatively persistent pattern of short term volatility of the series,
which at least partly is expected to be attributable to the deterministic seasonality in the
data, though it does not clearly show in the graph line.
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Figure 2: Logarithm of the CBBH foreign reserves

As presented in figure 3, auto correlation function shows exponential decay indicative of
an unit root or near unit root process. On the other hand partial auto correlation function
is significant up to the second lag (with changing sign) that, in combination with the shape
of the auto correlation function, could indicate a second order autoregressive process. Addi-
tionally, significance of the partial autocorrelation function (round) every twelve lags could
point to a stochastic seasonality present in the data generation process.

Figure 3: ACF and PACF functions of the logarithm of foreign reserves

(a) ACF function (b) PACF function

Note: 95% confidence bands when calculationg confidence interval bounds [se = 1/
√
n].

To make the series more amenable to formal empirical analysis the transformation in the
form of the first difference seems appropriate. The first difference of the logarithmic series
is presented in figure 4, with the aim of removing (stochastic) trend from the data. The
differencing appears to yield a series with a relatively stable mean, i.e. a relatively constant
mean monthly growth rate. Apart from the beginning period of increased volatility in the
series, the variance of the series appears to be quite constant. Thus, the underlying series
in levels appears to be difference stationary, with no clear signs of deterministic seasonality
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present in the data by visual inspection of the figure.

Figure 4: Monthly growth rates of the CBBH foreign reserves

However, the outcome of a seasonality test, where the first difference of the foreign re-
serves series is regressed on a constant and the set of eleven seasonal dummy variables, clearly
shows the presence of seasonality in the data since most of the seasonal dummy variables
appear highly statistically significant. It is interesting to note that all the coefficients on sea-
sonal dummy variables have negative signs, because the highest level of theforeign reserves
is usually present in December (treated by the constant).

Table 1: Seasonality test of the log of foreign reserves: dummy variable representation

Variables Coef. Std. Err. t P> | t | [95% Conf. interval]

Const. 0.06861 0.01266 5.419 0.000 0.04363 0.09359

m1 -0.08495 0.01791 -4.744 0.000 -0.12028 -0.04963

m2 -0.06695 0.01791 -3.739 0.000 -0.10228 -0.03163

m3 -0.06584 0.01791 -3.677 0.000 -0.10116 -0.03051

m4 -0.07172 0.01819 -3.944 0.000 -0.10760 -0.03585

m5 -0.07110 0.01819 -3.910 0.000 -0.10697 -0.03522

m6 -0.05331 0.01819 -2.931 0.004 -0.08918 -0.01744

m7 -0.03031 0.01791 -1.693 0.092 -0.06564 0.00501

m8 -0.04002 0.01791 -2.235 0.027 -0.07534 -0.00469

m9 -0.05380 0.01791 -3.004 0.003 -0.08913 -0.01848

m10 -0.04395 0.01791 -2.454 0.015 -0.07928 -0.00863

m11 -0.04999 0.01791 -2.792 0.006 -0.08532 -0.01467

To learn more about the seasonality features of the data, the so called Franses graph for
the data in first differences is given in the following figure, where every quarter is presented in
a separate line. The initial volatile period from 1999 to 2004 is left out to provide a clearer
representation. As it can be clearly seen, there is a lot of intertwining between different
quarters’ seasonal lines and one cannot easily discern the effects of different seasons. This
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could be an indication of the stationary stochastic seasonality present in the data that might
interact with the deterministic component of the seasonality process.

Figure 5: Franses graph: 2005-2016 period

Since graphical representation of the series in levels and first differences and in the form
of the seasonal graph for the data in the first differences and the seasonality test give mixed
signals about possible deterministic seasonality present in the data and indicate the possi-
ble presence of the stochastic seasonality, both ARIMA models with and without seasonal
dummy variables are going to be investigated as the candidate models for forecasting the
series of the foreign reserves.

3 Unit root testing

Before proceeding with formal ARIMA modelling, the order of the integration of the
series under consideration needs to be determined. Nonstationary variables may have a
pronounced deterministic and/or stochastic trend, appearing to meander without a constant
long-run mean or variance (Enders, 2010). In that case, the series needs to be transformed
to ensure stationarity before any further formal steps in the ARIMA methodology are taken.
Shocks to a non-stationary series have a permanent nature and the effects of those shocks are
never eliminated. On the other hand, shocks to a stationary time series are temporary and
over time the effects of the shocks dissipate and the series reverts to its long-run level. The
nature of the trend has important implications for the appropriate transformation necessary
to attain a stationary series.

In order to check for (non)stationarity of the foreign reserves series, a battery of the
standard unit root tests has been employed: Augmented Dickey Fuller (1979, 1981) test,
Phillips-Perron (1988) test, Dickey-Fuller test with GLS de-trending (Elliot, Rothenberg and
Stock, 1996) test and Kwiatkowski-Phillips-Schmidt-Shin (1992) test and results presented
in table 2.

The standard unit root tests of the foreign reserves series give somewhat mixed results,
depending on a specification of the test equation and a form of the test itself, but overall
indicate that the series is nonstationary. The Augmented Dickey-Fuller test shows that the
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Table 2: Unit root tests

Unit root test Specification:
Trend (yes/no)

Test
statistics

Critical values

Left tailed tests 1% 5% 10%

ADF No -3.459 -3.481 -2.884 -2.576
Yes -2.762 -4.011 -3.438 -3.138

PP(Z(rho)) No -5.534 -20.137 -13.902 -11.135
Yes -9.565 -28.073 -21.104 -17.837

PP(Z(t)) No -5.170 -3.467 -2.883 -2.573
Yes -4.148 -4.006 -3.437 -3.137

DFGLS No 1.184 -2.586 -1.946 -1.656
Yes -0.460 -3.480 -2.812 -2.534

Right tailed test 10% 5% 1%

KPSS No 1.230 0.347 0.463 0.739
Yes 0.355 0.199 0.146 0.216

Note: Lag length for the difference of the dependant variable in the test equation is thir-
teen for all the tests. With some tests trend variable appears no statistically significant,
possibly due to the presence of structural breaks.

series is integrated of order one, but only at 1 percent significance level for the specification
without trend.The Phillips-Perron test Z (t) statistics indicates no presence of the unit
root for both specifications. However, the Phillips-Perron test Z (rho) test statistics clearly
shows the presence of the unit root in both cases, as is the case with the Dickey-Fuller test
with GLS de-trending. Additionally, the Kwiatkowski-Phillips-Schmidt-Shin test implies
the presence of the unit root for both specifications —the zero hypothesis of stationarity is
strongly rejected at the conventional level of significance.

Visual inspection of the foreign reserves series suggests that, as in case of many other
macroeconomic time series in Bosnia and Herzegovina, it most likely exhibits one or more
structural breaks. A structural break in a time series may be the result of some unique
economic event, or can reflect an institutional, legislative or technical change. It can also be
the outcome of changes in economic policies or large economic shocks, such as the outset of
a crisis etc. In the case of a non-stationary series, shocks such as structural breaks can have
permanent effect on the series. Since structural breaks in time series can affect the result of
the standard unit root tests, the special form of unit root tests that account for structural
breaks has to be implemented. According to Perron (1990), there is a tradeoff between power
of the tests and the amount of a priori information one is willing to incorporate with respect
to the choice of the break point —less information yields low power and vice versa.

Perron (1989, 1990), Perron and Vogelsang (1992) and Perron (1997) suggested a unit
root test that allows for two different forms of structural break called the Additive Outlier
(AO) and the Innovational Outlier (IO) models. The AO model changes are assumed to
take place rapidly, while in the IO model changes are assumed to take place gradually over
a certain period of time. In the first model for testing unit root, the effect of the change on
the level of the series is not affected by dynamics of the correlation structure of the series. In
the second, it is assumed that the series reacts to the change in the mean in the same way it
responds to other shocks, implying that there is a transition period in the adjustment of the
series. Both models include the assumption of no break under the null hypothesis of unit
root. The main difference between the two procedures is that in the IO case, the estimation
is conducted on a single equation, while the AO requires an auxiliary regression.
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The structural breaks can be treated as being exogenous or endogenous. When the date
of the structural break can be determined, different forms of the Perron (1989) unit root test
that treats breaks as being exogenous can be used, i.e. the timing of the break is known in
advance. In essence, the testing procedure entails the addition of dummies to capture the
different segments in which the series is divided (before and after the break). On the other
hand, if the date of the break is uncertain, different types of unit root tests with endogenous
breaks should be used in which determination of the timing of the break is part of the
estimation procedure. Several studies have been developed using various methodologies for
endogenously determining the break date: Banerjee, Lumisdaine and Stock (1992), Zivot
and Andrews (1992), Perron and Vogelsang (1992) and Perron (1997), for example, that
allow for the possibility of only one structural break. Additionally, other tests have been
developed, allowing for the possibility of multiple structural breaks such as Lumsdaine and
Papell (1997) and Clemente, Montas and Reyes (1998), for example.

Since the series is characterized by many shocks and outliers, especially in the initial
period, it is relevant to consider the possibility of breaks in the series when testing for unit
roots (at zero frequency). To this end, Zivot-Andrews (1990) and Clemente, Montanes and
Reyes (1998) tests have been used.

Table 3: Unit root tests with structural breaks

Unit root test
Test stat. Critical values Break date(s)

1% 5% 10%

Zivot-Andrews test -4.630 -5.570 -5.080 -4.820 2008m1
CMR test
ONE BREAK
Additive Outlier -4.107 -3.560 2005m8
Innovational Outlier -3.674 -4.270 2001m7
TWO BREAKS
Additive Outlier -2.023 -5.490 2002m1 2006m4
Innovational Outlier -4.684 -5.490 2001m7 2005m4

Note: Lag selection criteria for the Zivot-Andrews test is Akaike (AIC) and one lag of the
dependent variable is included in the test equation. Breaks in both, the intercept and the
trend are allowed. The test is performed by STATA’s zandrews command. The Clemente-
Montans-Reyes (CMR) (IO, AO) tests are carried out by the clemio1 and clemio2 routines in
STATA.

All test results indicate the presence of the unit root in the series, apart from the
Clemente-Montanes-Reyes test with Additive Outlier specification. The break dates sug-
gested by the tests have an economic interpretation: the beginning of the effects of the
economic crisis in Bosnia and Herzegovina (2008m1), the euro conversion (2001m7 and more
precisely, 2002m1) and the VAT tax introduction at the beginning of 2006 (2005m4, 2005m8,
2006m4).

It is well known that in a time series with frequency higher than yearly (quarterly,
monthly, etc.) the unit root may be present in the long run (at zero frequency) and/or at
other frequences. Hylleberg et al (1990) developed a special technique for testing unit roots
at different frequencies —HEGY test —that investigates the possibility of the presence of
both long run and seasonal roots at different cycles. Initially developed for quarterly data,
in subsequent work their technique was extended to monthly data. In order to increase the
precision of the test and to obtain critical values more suitable to specific features of the
series under analysis, the critical values for testing monthly unit roots in this paper have
been calculated and tabulated (under the hypothesis of the unit root) using Monte Carlo
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simulations.

The testing for unit roots in monthly time series is equivalent to the testing for the
significance of the parameters in the regression:

Φ(L)s8,t = µt + π1s1,t−1 + π2s2,t−1 + π3s3,t−1 + π4s3,t−2 + π5s4,t−1 + π6s4,t−2

+ π7s5,t−1 + π8s5,t−2 + π9s6,t−1 + π10s6,t−2 + π11s7,t−1 + π12s7,t−2 + et (1)

Other auxiliary equations for individual variables in the regression are given in the ap-
pendix. The µt stands for the deterministic part and may consist of a constant, seasonal
dummies and trend.

Table 4: Testing for seasonal unit roots by HEGY test

Specification
without trend

Specification
with trend

π1 −3.09 *** −2.45 *
π2 −3.59 −3.59
π3 −5.84 −5.83
π4 −4.62 −4.65
π5 −6.23 −6.20
π6 −5.93 −5.91
π7 −3.32 −3.32
π8 0.21 *** 0.19 ***
π9 −3.82 −3.79
π10 −4.53 −4.50
π11 −4.75 −4.68
π12 0.19 *** 0.16 ***
π3, π4 31.30 31.47
π5, π6 20.36 20.18
π7, π8 17.74 17.88
π9, π10 12.31 12.14
π11, π12 14.19 13.87
π3, ..., π12 56.43 55.91

Note: * Significant at 10% level.** Significant at 5% level.
*** Significant at 1% level. The deterministic part of
the test equation includes a constant and standard set of
centered seasonal dummy variables without or with linear
trend.

The results of the test are presented in table 4 above. The non-seasonal unit root statistics
corresponds to the t-statistics of π1 and the seasonal unit root statistics with two months
per cycle corresponds to π2. Since pairs of complex roots are conjugates, these roots are
present when pairs of corresponding π′s are zero simultaneously. Those seasonal unit roots
correspond to the F-statistics for the pairs of π′s. Simulated critical values for t-tests for
separate π′s and for F-tests of pair of π′s, as well as for joint test of π3 = . . . = π12 are given
in the table 1 in the Appendix. Comparing the calculated test statistics with the appropriate
critical values, it can be seen that there is evidence for the presence of the unit root at zero
frequency, in accordance with the results of the standard unit root tests. However, there is
no indication of the unit root at other frequencies suggesting that the series should be first
differences in order to obtain stationarity of the data.
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Seasonal unit root tests in finite samples suffer from severe size distortions and power
reductions when breaks are present in the data (Hassler and Rodrigues, 2002). As in the case
of the standard non-seasonal unit root tests, neglecting (seasonal) mean shifts can bias unit
root tests towards non-rejection (Perron, 1989) or to spurious rejection of the null hypothesis
(Leybourne, Mills and Newbold, 1998). Structural breaks may not only have general effects
on the levels and trends of the series, but they may also change the observed pattern of
seasonality. Therefore, it is necessary to allow for possible seasonal mean shifts when testing
for seasonal unit roots to precisely determine the characteristics of a time series in terms of
the unit root presence.

If it is assumed that there is a single break that occurs at time TB(1 < TB < T ), it is
possible to test the null hypothesis of the Innovational Outlier (IO) break in monthly data
by estimating the following equation:

∆12yt = µt+βt+
1

∑

k=2

2δkDkt+
1

∑

k=1

2πksk,t+

ρ−1
∑

i=1

ψi∆12yt−i+
12
∑

k=2

θkSkt+
12
∑

k=2

ηk∆12Skt+vt (2)

Skt =

{

1 tTB
0 t < TB

}

(3)

This is the standard HEGY test equation with addition of Skt that stands for seasonal
dummy variables that start to be active at the time of the break. The standard procedure
for conducting this test requires us to estimate the equation above for all the potential break
dates in the data. It is advisable to restrict the range of possible breaks to [T ∗

B, , T − T ∗

B],
where T ∗

B = λT to assure the results are asymptotically valid, as recommended by Franses
and Volgelsang (1998). The value of λ is called the amount of trimming and it practically
excludes some observations at the beginning and at the end of the series from the potential
break dates.

There are two approaches for selecting the break date. The first method involves min-
imizing the value of the tπi

(TB) and maximizing the value of the Fπodd,πeven
(TB) statistics

over all possible break dates. De facto, this procedure boils down to selecting the break date
when the statistics is least favorable to the null hypothesis. This method can be defined:

T̂B,πi
= argmin(tπi

(TB)), i = 1, 2 (4)

T̂B,Fo,e
= argmax(Fodd,even(TB)) (5)

In this procedure there will be identified as many break dates as there are unit roots con-
sidered because, for each frequency, the selection is based on statistics that is least favorable
to the null (Franses and Volgelsang, 1998). In this procedure the trimming is allowed, but
is not required.

The second method bases the selection of the break date on the maximization of the
significance of the seasonal dummy shift variable:

T̂B = argmax(Fθ(TB)) (6)

This procedure identifies a unique break date and the trimming of the observations is
necessary. According to Perron and Volgelsang (1992), the second method has more power
than the first. Additionally, as shown in Harvey, Leybourne and Newbold (2001) the second
procedure tends to anticipate the break date by one period in the case of quarterly data.
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However, Mendez (2015) found no conclusive evidence of the anticipation of the break dates
in the case of monthly data.

In order to check the results obtained by the standard HEGY test we employ the HEGY
test when structural breaks are determined endogenously. The test equation specifications
are the same as before. The critical values for both procedures, the one that minimizes
t-statistics and maximizes F-statistics, as well as the one that maximizes the significance
of the dummy shift variable, are given in tables 11 and 12 in the Appendix, respectively.
The set of the tabulated critical values are calculated assuming that the break size follows a
standard normal distribution. The break dates identified are concentrated round two major
events —the euro conversion during 2001 and the VAT tax introduction at the beginning of
the 2006.

Table 5: Testing for seasonal unit roots by HEGY test with endogenous structural breaks

Specification
without trend

Break date
Specification
with trend

Break date

π1 −1.55 * 2001m10 −4.08 * 2003m1
π2 −4.29 *** 2001m3 −4.21 ** 2003m11
π3, π4 22.23 2006m1 51.10 2003m12
π5, π6 13.61 *** 2002m3 16.73 2002m3
π7, π8 59.63 2001m10 80.26 2003m9
π9, π10 29.54 2005m8 28.82 2005m8
π11, π12 33.40 2001m6 42.30 2001m6

Note: * Significant at 10% level.** Significant at 5% level. *** Significant at 1% level.
The test is based on the Innovational Outlier model. Brake dates are determined on the
basis of minimum t, maximum F statistics criteria.

In table 5 above we present the results of the test when the break selection is based on
the least favorable statistics to the null hypothesis, minimizing t and maximizing F values.
For each frequency the particular time of the break found is presented as different break
dates are associated with different roots. As can be clearly seen we still cannot reject the
null of the unit root at zero frequency. However, in comparison to the results of the standard
HEGY test evidence for new roots at 2 months and 2.4 months frequency for the specification
without trend and for 2 months only for the specification with trend seems to appear.

In the following table we give the results of the seasonal unit root test when the break
date is determined by maximizing the significance of the seasonal break dummies. In this
case a single break date is identified. Again, we cannot reject the null of the unit root at
zero frequency. But, the evidence for more roots seems to appear at different frequencies,
especially in the case of the specification with trend where roots at almost all frequencies
appear to be present.

The fact that when the HEGY test with endogenous consideration of break dates is used
gives an indication of new seasonal unit roots seems to complicate our judgement. However, it
is important to bear in mind that this test has less power than the test without the structural
break because more parameters have been estimated using the same number of observations,
as explained in Mendez (2015). This could be an explanation for the appearance of the new
seasonal roots.

The true purpose of the extended HEGY test is to check for the possibility that structural
breaks may disguise otherwise stationary processes as those showing unit root(s). In that
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Table 6: Testing for seasonal unit roots by HEGY test with endogenous structural breaks

Specification
without trend

Specification
with trend

Break date 2008m11 2008m11

π1 −0.23 * −2.03 *
π2 −1.87 * −2.18 *
π3, π4 11.05 10.58 ***
π5, π6 1.64 * 2.23 *
π7, π8 7.47 * 6.83 *
π9, π10 15.28 15.19
π11, π12 9.90 *** 10.37 ****

Note:* Significant at 10% level.** Significant at 5% level.
*** Significant at 1% level. The test is based on the Inno-
vational Outlier model. Brake dates are determined on the
basis of the maximum value of t statistics on the dummy
shift variable.

respect, only in cases when the HEGY test without structural breaks indicates the presence
of the unit root should the extended HEGY test be considered to check the validity of the
findings since the latter has less power than the former (Mendez, 2015). Additionally, this
procedure identifies break date at 2008m11 round the time when the effects of the large
economic crisis started to appear in the economy of Bosnia and Herzegovina.

4 Forecasting

Franses (1991) shows that correctly taking account of the type of seasonality and non-
stationarity in monthly data can improve the forecasting performance. The formal unit
root tests results here confirm the initial assumption that it is appropriate to first difference
the foreign reserves series to obtain stationarity. Since there is no clear evidence of the
seasonal unit roots, ∆12 seasonal filter will not be applied. Accordingly, the monthly growth
rates of the foreign reserves will be analyzed to estimate and fit the best ARIMA model for
forecasting purposes. Towards this end, formal Box-Jenkins (1976) strategy for appropriate
model selection will be implemented.

Both, the auto correlation function and the partial autocorrelation function are significant
up to the second lag, with changing sign in the second case which could serve as a rough
indication of the shape of the ARIMA model. Significance of the autocorrelation function
and the partial autocorrelation function at approximately every twelve lags suggest that the
stochastic seasonality may be present in the data generation process.

Estimation and evaluation results of the competing models for the forecasting exercise
are presented in table 7. The competing specifications analyzed are the following:

1. ARIMA((1,3), 1, 1/2),

2. ARIMA((2),1,1),

3. ARIMA(0,1,1/3),

4. ARIMA(0,1,(1/3,12)) + seasonal dummies (additive stochastic seasonality) and
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Figure 6: ACF and PACF functions of the first difference of the logarithm of foreign reserves

(a) ACF function (b) PACF function

Note: 95% confidence bands when calculationg confidence interval bounds [se = 1/
√
n].

5. SARIMA(0,1,1/3)(0,0,1) + seasonal dummies (multiplicative stochastic seasonality).

All models mostly display highly significant autoregressive and moving average estimation
parameters. As can be seen in the table, the constant is not statistically significant in the
first three specifications without seasonal dummy variables. However, the constant is kept in
the model specifications for the forecast evaluation. The Box-Pierce portmanteau statistics
does not provide evidence of the autocorrelation present in the residuals.

The first model is not invertible, since all roots of the characteristic polynomial for
the MA component are not outside the unit circle and thus will not be further taken into
consideration. The Akaike and Schwartz-Bayesian statistics suggest the fourth and the third
specification to have the best overall fit, respectively.

To evaluate competing models in terms of their forecasting performance they are esti-
mated on a sample trimmed by 50 observations at the end of the series and forecasts for
50 out-of-sample months are generated from each of these models. Both, rolling (constant)
window and expanding window procedures are implemented.

The standard set of forecast accuracy measures for one to four periods ahead, given in
tables 13 to 16 in the Appendix, show no clear indication as to what is the best model in
terms of the forecasting performances. Generally, they favor simpler model specifications
with no deterministic and stochastic seasonality modelled in the case of the expanding win-
dow strategy and vice versa in the case of the rolling window strategy. However, the MAPE
criterion always gives advantage to more parsimonious models. Since it is known that these
statistics can mask an important feature of the forecast evaluation exercises that higher fore-
cast errors may be caused by a few observational errors, they should be supported by other
forecast evaluation statistics.

Theil U2 statistics is a measure of the forecasting performance between competing models
in the form of a ratio of their mean squared errors. The value of the ratio smaller than one
indicates that the first model’s forecasting performance (whose mean squared error is given
in the numerator) is better than the second’s and vice versa. The resulting test statistics
presented in table 9 generally indicates that the models with deterministic and stochastic
seasonality explicitly accounted for have better forecasting performance than the simpler
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Table 7: Estimation results of different ARIMA specifications

(1) (2) (3) (4) (5)
Variables ar1 3ma1 2 12 ar2ma1 12 ma3 12 ma3 12seas ma3mma12seas

Constant 0.0175 0.0174 0.0175 0.0694*** 0.0687***
(0.0130) (0.0108) (0.0113) (0.0179) (0.0182)

m1 -0.0860*** -0.0851***
(0.0244) (0.0201)

m2 -0.0673** -0.0669*
(0.0307) (0.0345)

m3 -0.0668* -0.0661**
(0.0363) (0.0329)

m4 -0.0710** -0.0700*
(0.0342) (0.0382)

m5 -0.0691* -0.0698*
(0.0403) (0.0418)

m6 -0.0534 -0.0529
(0.0330) (0.0333)

m7 -0.0288 -0.0295
(0.0253) (0.0245)

m8 -0.0416 -0.0402
(0.0352) (0.0347)

m9 -0.0568** -0.0538**
(0.0282) (0.0269)

m10 -0.0410** -0.0414**
(0.0176) (0.0175)

m11 -0.0480*** -0.0484***
(0.0186) (0.0160)

L.ar -0.139**
(0.0550)

L2.ar 0.226***
(0.0672)

L3.ar 0.246***
(0.0551)

L1.ma 0.496*** 0.342*** 0.371*** 0.393*** 0.347***
(0.0659) (0.0421) (0.0498) (0.0581) (0.0497)

L2.ma 0.598*** 0.340*** 0.306*** 0.224**
(0.0671) (0.0465) (0.0740) (0.0954)

L3.ma 0.109*** 0.136** 0.155**
(0.0409) (0.0685) (0.0769)

L12.ma 0.502*** 0.285*** 0.386*** 0.283***
(0.0648) (0.0692) (0.0611) (0.0695)

L13.ma 0.140*
(0.0827)

Sigma 0.0468*** 0.0496*** 0.0487*** 0.0455*** 0.0463***
(0.00164) (0.00109) (0.00128) (0.00171) (0.00165)

Obs. 201 201 201 201 201

AIC -625.5 -626.7 -629.6 -635.8 -630.6

BIC -608.9 -603.6 -609.8 -579.6 -574.4

BP(12) 0.993 0.342 0.948 0.889 0.889

BP(24) 0.456 0.131 0.333 0.775 0.775

Note: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. The evaluation criteria are
the Box-Pierce portmanteau test statistics calculated for m lags. The Akaike (AIK) and Schwartz-
Bayesian (BIC) criterions are given as measures of the overall fit of the model.

15



Table 8: Theil U2 statistics between alternative specifications

Period 1 Period 2 Period 3 Period 4

Expanding window

ar2ma1 12 vs ma3 12 1.154 0.996 0.995 0.994
ar2ma1 12 vs ma3 12seas 0.707 1.042 1.538 1.054
ar2ma1 12 vs ma3mma12seas 0.653 1.077 1.632 1.123
ma3 12 vs ma3 12seas 0.613 1.046 1.546 1.060
ma3 12 vs ma3mma12seas 0.566 1.081 1.641 1.129
ma3 12seas vs ma3mma12seas 0.924 1.033 1.061 1.065

Constant window

ar2ma1 12 vs ma3 12 1.013 1.014 1.002 0.974
ar2ma1 12 vs ma3 12seas 1.033 1.472 4.719 2.014
ar2ma1 12 vs ma3mma12seas 1.131 1.445 5.093 1.657
ma3 12 vs ma3 12seas 1.020 1.453 4.708 2.068
ma3 12 vs ma3mma12seas 1.117 1.426 5.082 1.701
ma3 12seas vs ma3mma12seas 1.095 0.981 1.079 0.823

models where the seasonality effects are left in the residual. However, the Theil U2 statistics
favors simpler models for very short term forecasts (one period ahead) in the expanding
window strategy case. When models with the seasonality treated are directly compared more
evidence is found in favor of the model with multiplicative stochastic seasonality, especially
when the expanding window strategy is implemented.

The results of comparing the competing models’ forecasting performances in terms of
Diebold and Mariano (1995) test are outlined in table 17 in the Appendix. Here, the null
of equal forecast accuracy is tested against the alternative of the model with a lower value
of the given criterion being better. The test results generally show that more parsimonious
model specifications have equal forecasting performance as more complex models.2 When
the two most complex model specifications with the deterministic and stationary stochastic
seasonality modelled are directly compared, the test results roughly show that in the case
of the rolling window strategy the model with additive seasonality fares better then the one
with multiplicative sthochastic seasonality.

Table 9 presents decomposition of the mean squared error of the forecasts to bias propor-
tion (BP), variance proportion (VP) and covariance proportion (CP). The bias proportion
shows how far the mean of the forecast is from the mean of the actual series. The vari-
ance proportion indicates how far the variation of the forecast is from the variation of the
actual series, while the covariance proportion measures the remaining unsystematic forecast-
ing error. By definition, these three measures sum to one. For a good forecast, the bias
and variance proportions should be as small as possible, since this suggests the model is
providing a good estimate of the underlying data generating process. So, most of the mean
square error should be due to the covariance proportion unsystematic component. In the
case of the expanding window procedure, the statistics indicates the ARIMA(0,1,(1/3,12))
+ seasonal dummies for one period ahead forecasts and the SARIMA(0,1,1/3)(0,0,1) + sea-
sonal dummies for two to four step ahead forecasts to be the best specifications. The rolling
window procedure suggests the second to outperform others for all the forecasting periods.

Taking into consideration all the available evidence on the forecasting performances of

2Since we are dealing with nested models, only the constant window procedure has been used to compute
forecast statistics (Giacomini and White, 2006).
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Table 9: MSE Decomposition

Period 1 Period 2 Period 3 Period 4

EXPANDING WINDOW

BP ar2ma1 12 0.080 0.300 0.302 0.304
VP ar2ma1 12 0.299 0.640 0.635 0.631
CP ar2ma1 12 0.640 0.074 0.077 0.079

BP ma3 12 0.067 0.301 0.303 0.306
VP ma3 12 0.149 0.629 0.624 0.622
CP ma3 12 0.803 0.084 0.086 0.086

BP ma3 12seas 0.052 0.203 0.206 0.207
VP ma3 12seas 0.032 0.042 0.042 0.041
CP ma3 12seas 0.935 0.771 0.768 0.767

BP ma3mma12seas 0.057 0.200 0.202 0.203
VP ma3mma12seas 0.039 0.037 0.038 0.037
CP ma3mma12seas 0.923 0.779 0.777 0.776

CONSTANT WINDOW

BP ar2ma1 12 0.021 0.084 0.084 0.085
VP ar2ma1 12 0.350 0.522 0.522 0.521
CP ar2ma1 12 0.650 0.412 0.412 0.411

BP ma3 12 0.012 0.080 0.080 0.079
VP ma3 12 0.174 0.534 0.532 0.529
CP ma3 12 0.835 0.406 0.407 0.411

BP ma3 12seas 0.006 0.050 0.052 0.046
VP ma3 12seas 0.006 0.008 0.006 0.006
CP ma3 12seas 1.008 0.961 0.962 0.967

BP ma3mma12seas 0.014 0.057 0.059 0.059
VP ma3mma12seas 0.004 0.007 0.007 0.007
CP ma3mma12seas 1.002 0.955 0.954 0.953

competing models, the specification SARIMA(0,1,1/3)(0,0,1) + seasonal dummies is consid-
ered to be the most appropriate model for forecasting the foreign reserves in Bosnia and
Herzegovina. The significance of the seasonal dummy variables in the seasonality test sug-
gests that deterministic seasonality is present in the series. Even though many of the test
statistics considered show mixed results in terms of the forecasting performances of the al-
ternative models, the mean squared error decomposition and Thail U2 test suggest that this
model outperforms the others.

The fact that the third order moving average model has been chosen as being representa-
tive of the data generating process for the foreign reserves has the following interpretation.
The moving-average model specifies that the foreign reserves depend linearly on the current
and past values of a stochastic, imperfectly predictable error term. Shocks are propagated to
future values of the series directly and are relatively short lived—they affect the series only
for the current period and three periods into the future. Additionally, the multiplicative
seasonality specification suggests that there are more distant regular seasonal shocks that
affect the series.
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Figure 7: Foreign reserves: forecasted and actual series (in KM billions)

Note: Coefficient uncertainty is not accounted for when calculationg confidence interval bounds.

The figure 8 shows the forecasted values of the original foreign reserves series based
on the selected model for 12 months into the future in the form of a fan chart. One can
see that the forecast traces the series fairly well in the first several months, but in the later
periods it drifts apart. This is natural bearing in mind that the univariate time series models
are generally intended for obtaining very short term forecasts and that the moving average
specification has short memory, up to the specified number of lags.

5 Conclusion

This paper shows the testing and selection procedure for an appropriate univariate time
series model for forecasting the foreign reserves in Bosnia and Herzegovina. The foreign
reserves represent one of the most important macroeconomic indicators in the economy, es-
pecially in the context of functioning of the automatic adjustment mechanism of the currency
board. Readily available forecasts of the foreign reserves are important from the perspective
of maintaining macroeconomic and financial stability, foreign reserves management, drafting
budgeting plans in the central bank, etc.

Visual inspection and formal analysis of the logarithm of the foreign reserves in the spirit
of Box-Jenkins suggests that the series contains the unit root. Graphical analysis in the
form of Franses graph and the seasonality test are suggestive of the presence of deterministic
seasonality, the former less conclusively though.

A standard battery of the formal unit root tests at zero frequency indicates the presence
of the unit root in the series. The tests with endogenous structural breaks substantiate this
finding. The paper illustrates procedures for the standard HEGY seasonal unit root test and
the tests with endogenous consideration of structural breaks. Towards that end, the critical
values have been tabulated for the both types of tests based on Monte Carlo simulations.
The HEGY test for monthly data confirms the presence of the unit root at zero frequency,
but gives no indication of unit roots at other frequencies. Additionally, the HEGY tests with
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endogenous treatment of structural breaks, based on the innovational outlier model, gener-
ally provides evidence for this conclusion, even though there are some conflicting results of
the seasonal unit root test when the break date is determined by maximizing the significance
of the seasonal break dummies.

Finally, after running a horse race between competing ARIMA model specifications, the
forecasting performance tests suggest that the third order moving average specification with
multiplicative stochastic stationary seasonality and with a standard set of seasonal dummy
variables included outperforms the alternative models. This leads us to the conclusion that
shocks to the foreign reserves propagate directly to the future values of the series and that
they are relatively short lived.

Future work can extend the HEGY test procedure with endogenous structural breaks
to additive outlier model case, assuming the breaks have immediate effect on the series.
Furthermore, the assumption of a normal distribution of breaks may be substituted for the
case of large structural breaks. In both cases the test results should be compared to the ap-
propriate simulated critical values—based on the testing procedure for the additive outlier
model in the first case and on the generated series when the large breaks are introduced in
the DGP in the second.

The univariate time series models for forecasting the foreign reserves should be supple-
mented with time series models with a richer structure, such as vector autoregressive (VAR)
models or vector error correction models in the case of a cointegrating relationship between
variables. Finally, more complex structural models for medium to long term forecasting
could be developed.
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A Appendix

HEGY test auxiliary equations

s8,t = (1− L12)st (7)

s1,t = (1 + L)(1 + L2)(1 + L4 + L8)st (8)

s2,t = −(1− L)(1 + L2)(1 + L4 + L8)st (9)

s3,t = −(1− L2)(1 + L4 + L8)st (10)

s4,t = −(1− L4)(1−
√
3L+ L2)(1 + L2 + L4)stt (11)

s5,t = −(1− L4)(1 +
√
3L+ L2)(1 + L2 + L4)st (12)

s6,t = −(1− L4)(1− L2 + L4)(1− L+ L2)st (13)

s7,t = −(1− L4)(1− L2 + L4)(1 + L+ L2)st (14)
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Table 10: HEGY test for monthly data - critical values

Constant, dummies and no trend Constant, dummies and trend

t-statistics 0.01 0.05 0.10 0.01 0.05 0.10

π1 −3.32 −2.76 −2.47 −3.84 −3.30 −3.00

π2 −3.31 −2.76 −2.47 −3.26 −2.72 −2.43

t-statistics 0.005 0.025 0.05 0.95 0.975 0.995 0.005 0.025 0.05 0.95 0.975 0.995

π3 −2.85 −2.15 −1.86 1.87 2.20 2.80 −2.85 −2.13 −1.82 1.82 2.13 2.81

π4 −3.95 −3.52 −3.25 −0.50 −0.23 0.39 −4.04 −3.45 −3.21 −0.46 −0.19 0.33

π5 −3.92 −3.39 −3.11 −0.08 0.21 0.79 −3.82 −3.34 −3.06 −0.09 0.20 0.80

π6 −4.00 −3.47 −3.21 −0.48 −0.19 0.41 −3.91 −3.42 −3.17 −0.45 −0.16 0.41

π7 −0.86 −0.25 0.04 3.14 3.41 3.93 −0.77 −0.19 0.14 3.08 3.33 3.89

π8 −4.01 −3.48 −3.22 −0.43 −0.15 0.43 −3.96 −3.49 −3.22 −0.43 −0.14 0.43

π9 −3.56 −3.02 −2.70 0.83 1.21 1.86 −3.50 −2.93 −2.61 0.79 1.11 1.67

π10 −4.02 −3.50 −3.24 −0.45 −0.18 0.43 −3.92 −3.42 −3.18 −0.46 −0.14 0.44

π11 −1.80 −1.13 −0.79 2.71 3.05 3.65 −1.70 −1.09 −0.75 2.66 2.95 3.50

π12 −4.06 −3.51 −3.24 −0.48 −0.17 0.47 −4.04 −3.49 −3.21 −0.48 −0.21 0.28

F-statistics 0.90 0.95 0.99 0.90 0.95 0.99

π3, π4 5.24 6.25 8.24 5.13 6.06 8.35

π5, π6 5.22 6.17 8.20 5.10 6.09 7.95

π7, π8 5.27 6.23 8.39 5.14 6.19 8.19

π9, π10 5.30 6.25 8.30 5.07 5.93 7.86

π11, π12 5.30 6.35 8.46 5.09 6.11 8.31

π3, ..., π12 3.91 4.36 5.17 3.87 4.34 5.17

Note: The critical values are obtained by 10,000 Monte Carlo simulations. DGP: y = y(−12)+ǫ, ǫ ∼ N(0, 1).
Number of observations equals 202.

Table 11: Critical values of HEGY test for monthly data with endogenous breaks

Specification
without trend

Specification
with trend

t-statistics 0.99 0.95 0.90 0.99 0.95 0.90

π1 -4.86 -4.28 -3.96 -5.33 -4.75 -4.45

π2 -4.81 -4.23 -3.93 -4.84 -4.24 -3.96

F-statistics 0.90 0.95 0.99 0.90 0.95 0.99

π3, π4 11.34 12.75 16.24 11.33 12.78 15.82

π5, π6 11.55 12.87 15.90 11.34 12.78 15.90

π7, π8 11.54 12.89 16.13 11.45 12.88 16.04

π9, π10 11.40 12.79 16.12 11.35 12.87 16.24

π11, π12 5.31 6.31 8.93 5.33 6.39 8.91

Note: The critical values are obtained by 5000 Monte Carlo simulations.The
test is based on the Innovational Outlier model. Brake dates are determined
on the basis of the minimum t, maximum F statistics criteria.
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Table 12: Critical values of HEGY test for monthly data with endogenous breaks

Specification
without trend

Specification
with trend

t-statistics 0.99 0.95 0.90 0.99 0.95 0.90

π1 -3.83 -3.14 -2.81 -4.24 -3.62 -3.31

π2 -3.77 -3.14 -2.80 -3.80 -3.12 -2.80

F-statistics 0.90 0.95 0.99 0.90 0.95 0.99

π3, π4 6.64 8.01 10.94 6.67 7.98 11.01

π5, π6 6.85 8.06 10.82 6.74 8.10 11.01

π7, π8 6.66 8.10 10.97 6.80 8.18 11.47

π9, π10 6.71 7.94 10.64 6.75 7.98 10.79

π11, π12 6.84 8.04 11.11 6.83 8.31 11.13

Note: The critical values are obtained by 5000 Monte Carlo simula-
tions.The test is based on the Innovational Outlier model. Brake dates
are determined on the basis of the maximum value of the t statistics on a
dummy shift variable.

Table 13: One step ahead forecast evaluation statistics

BIAS SE RMSE MAE MAPE

Expanding window

ar2ma1 12 -0.006 0.019 0.020 0.016 2.421
ma3 12 -0.006 0.021 0.021 0.017 2.757
ma3 12seas -0.005 0.023 0.023 0.019 4.170
ma3mma12seas -0.006 0.023 0.024 0.019 4.151

Constant window

ar2ma1 12 -0.003 0.018 0.018 0.015 2.182
ma3 12 -0.002 0.019 0.019 0.016 2.347
ma3 12seas -0.002 0.019 0.019 0.016 2.672
ma3mma12seas -0.002 0.019 0.019 0.016 2.695

Table 14: Two step ahead forecast evaluation statistics

BIAS SE RMSE MAE MAPE

Expanding window

ar2ma1 12 -0.013 0.019 0.023 0.019 3.864
ma3 12 -0.013 0.020 0.023 0.019 3.880
ma3 12seas -0.012 0.023 0.026 0.019 4.490
ma3mma12seas -0.011 0.023 0.025 0.019 4.422

Constant window

ar2ma1 12 -0.006 0.020 0.021 0.017 2.940
ma3 12 -0.006 0.020 0.021 0.017 2.883
ma3 12seas -0.004 0.019 0.020 0.016 2.869
ma3mma12seas -0.005 0.019 0.020 0.016 3.088
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Table 15: Three step ahead forecast evaluation statistics

BIAS SE RMSE MAE MAPE

Expanding window

ar2ma1 12 -0.013 0.019 0.023 0.019 3.883
ma3 12 -0.013 0.020 0.023 0.019 3.901
ma3 12seas -0.012 0.023 0.026 0.019 4.470
ma3mma12seas -0.011 0.023 0.025 0.019 4.401

Constant window

ar2ma1 12 -0.006 0.020 0.021 0.017 2.931
ma3 12 -0.006 0.020 0.021 0.017 2.866
ma3 12seas -0.004 0.019 0.019 0.016 2.854
ma3mma12seas -0.005 0.019 0.020 0.016 3.043

Table 16: Four step ahead forecast evaluation statistics

BIAS SE RMSE MAE MAPE

Expanding window

ar2ma1 12 -0.013 0.019 0.023 0.019 3.905
ma3 12 -0.013 0.019 0.023 0.019 3.914
ma3 12seas -0.012 0.023 0.026 0.019 4.490
ma3mma12seas -0.011 0.023 0.025 0.019 4.432

Constant window

ar2ma1 12 -0.006 0.020 0.021 0.017 2.959
ma3 12 -0.006 0.020 0.021 0.017 2.882
ma3 12seas -0.004 0.019 0.019 0.016 2.859
ma3mma12seas -0.005 0.019 0.020 0.016 3.099
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Table 17: Diebold Mariano test between alternative specifications

Period 1 Period 2 Period 3 Period 4

Constant window Constant window Constant window Constant window

MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE

ar2ma1 12 0.00 0.01 2.18 0.00 0.02 2.94 0.00 0.02 2.93 0.00 0.02 2.96

ma3 12 0.00 0.02 2.35 0.00 0.02 2.88 0.00 0.02 2.87 0.00 0.02 2.88

Difference −0.00 −0.00 −0.17 0.00 0.00 0.06 0.00 0.00 0.06 0.00 0.00 0.08

p value 0.18 0.12 0.52 0.29 0.40 0.13 0.05 0.35 0.17 0.28 0.23 0.13

ar2ma1 12 0.00 0.01 2.18 0.00 0.02 2.94 0.00 0.02 2.93 0.00 0.02 2.96

ma3 12seas 0.00 0.02 2.67 0.00 0.02 2.87 0.00 0.02 2.85 0.00 0.02 2.86

Difference −0.00 −0.00 −0.49 0.00 0.00 0.07 0.00 0.00 0.08 0.00 0.00 0.10

p value 0.62 0.28 0.12 0.66 0.70 0.88 0.63 0.71 0.87 0.63 0.66 0.84

ar2ma1 12 0.00 0.01 2.18 0.00 0.02 2.94 0.00 0.02 2.93 0.00 0.02 2.96

ma3mma12seas 0.00 0.02 2.70 0.00 0.02 3.09 0.00 0.02 3.04 0.00 0.02 3.10

Difference −0.00 −0.00 −0.51 0.00 0.00 −0.15 0.00 0.00 −0.11 0.00 0.00 −0.14

p value 0.80 0.56 0.28 0.68 0.82 0.68 0.70 0.84 0.76 0.71 0.87 0.71

ma3 12 0.00 0.02 2.35 0.00 0.02 2.88 0.00 0.02 2.87 0.00 0.02 2.88

ma3 12seas 0.00 0.02 2.67 0.00 0.02 2.87 0.00 0.02 2.85 0.00 0.02 2.86

Difference 0.00 −0.00 −0.33 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.02

p value 0.97 0.84 0.47 0.68 0.73 0.97 0.64 0.73 0.98 0.64 0.70 0.96

ma3 12 0.00 0.02 2.35 0.00 0.02 2.88 0.00 0.02 2.87 0.00 0.02 2.88

ma3mma12seas 0.00 0.02 2.70 0.00 0.02 3.09 0.00 0.02 3.04 0.00 0.02 3.10

Difference 0.00 0.00 −0.35 0.00 0.00 −0.20 0.00 0.00 −0.18 0.00 0.00 −0.22

p value 0.84 0.97 0.54 0.70 0.85 0.52 0.71 0.87 0.58 0.73 0.91 0.50

ma3 12seas 0.00 0.02 2.67 0.00 0.02 2.87 0.00 0.02 2.85 0.00 0.02 2.86

ma3mma12seas 0.00 0.02 2.70 0.00 0.02 3.09 0.00 0.02 3.04 0.00 0.02 3.10

Difference 0.00 0.00 −0.02 −0.00 −0.00 −0.22 −0.00 −0.00 −0.19 −0.00 −0.00 −0.24

p value 0.00 0.00 0.87 0.55 0.00 0.01 0.01 0.03 0.01 0.03 0.04 0.01

Note:
Numbers in the table represent:
- value of a specific criteria for particular ARIMA specification,
- difference (the first minus the second value in each block),
- and statistical significance of the H0 hypothesis that forecast values are equal.
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