

Macroprudential Policy: Promise & Challenges (Effectiveness, Interaction & International)

Enrique G. Mendoza University of Pennsylvania, NBER & PIER

5th Annual Conference of the Bilateral Assistance and Capacity Building for Central Banks Programme

The promise

- Macroprudential policy (MPP) aims to weaken credit booms in "good times" so as to reduce frequency & severity of financial crises
- Credit booms are infrequent, but end in deep, protracted crises (Mendoza & Terrones (2012)):
 - 1. Credit booms occur with 2.8% frequency
 - 2. 1/3rd end in banking or currency crises.
 - 3. 3 years after credit peaks, GDP is 5% to 8% below trend
- Models with Fisherian collateral constraints justify MPP based on a market failure due to pecuniary externalities in collateral valuation
 - 1. Quantitative models show MPP is very effective

 Occasionally binding collateral constraints with collateral valued at market prices:

$$\frac{b_{t+1}}{R_t} \geq -\kappa_t f(p_t)$$

- 1. Debt-to-income (DTI) models: $f(p_t^N) = y_t^T + p_t^N y_t^N$
- 2. Loan-to-value (LTV) models : $f(q_t) = q_t k_{t+1}$
- Market price of collateral determined by aggregate allocations: $f(p_t^N(C_t^T, C_t^N)), f(q_t(C_t, C_{t+1}))$
- Pecuniary externality: Agents choose debt in "good times" ignoring price responses in "crisis times"

Overborrowing & optimal MPP

• Decentralized Euler eq. for bond holdings: $u'(t) = \beta R_t E \left[u'(t+1) \right] + \mu_t$

– In normal times μ_t =0 => standard Euler equation

- But for a planner internalizing the externality: $u'(t) = \beta R_t E \left[u'(t+1) + \mu_{t+1}^* \kappa_{t+1} f'(t+1) \frac{\partial p_{t+1}}{\partial \tilde{C}_{t+1}} \frac{\partial \tilde{C}_{t+1}}{\partial b_{t+1}} \right]$
- If social MC of debt exceeds private MC, private agents "overborrow" in good times
 – Optimal MPP: debt taxes, LTV ratios or capital req.

The challenges

- Complexity & credibility: Optimal MPP follows complex rules and is time-inconsistent under commitment, hence lacks credibility (Bianchi & Mendoza (2017), JPE)
- 2. Coordination failure with monetary policy: Costly inefficiencies due to Tinbergen's rule violations and strategic interaction (Carrillo et al. (2017))
- *3. Are capital controls justified?:* Most models do not justify discriminating credit sources, but ignore liability dollarization (Mendoza & Rojas (2017))

- When μ_t >0, the planner views the effects of the choice of b_{t+1} on C_{t+1}, and hence on q_t, differently depending on its ability to commit
- Commitment: Promise lower C_{t+1}, to prop up q_t, because q_t(C_t, C_{t+1}) is decreasing in C_{t+1}, but at t+1 this is suboptimal=> time inconsistency
- *Discretion:* The planner of date t considers how its choices affect choices of the planner of t+1 (needs to align incentives)

Effectiveness of Optimal (TC) policy: Bianchi-Mendoza LTV model

Simpler rules are much less effective

	Decentralized Optimal		Best	Best	
	Equilibrium	Policy	Taylor	Fixed	
Welfare Gains $(\%)$	_	0.30	0.09	0.03	
Crisis Probability (%)	4.0	0.02	2.2	3.6	
Drop in Asset Prices $(\%)$	-43.7	-5.4	-36.3	-41.3	
Equity Premium $(\%)$	4.8	0.77	3.9	4.3	
Tax Statistics					
Mean	_	3.6	1.0	0.6	
Std relative to GDP	_	0.5	0.2		
Correlation with Leverage	_	0.7	0.3		

Financial Taylor Rule: $\tau = \max[0, \tau_0(b_{t+1}/\bar{b})^{\eta_b} - 1]$

2. Coord. failure: Carrillo et al. (2017)

- MP/FP interaction:
 - 1. DSGE-BGG model with risk shocks
 - 2. Calvo pricing => inefficiencies in goods markets
 - 3. Costly monitoring =>Inefficiencies in credit-capital market
 - 4. MP (FP) instrument affects target & payoff of FP (MP)
- MP follows simple or augmented Taylor rule:

$$(1+i_t) = (1+i) \left(\frac{1+\pi_t}{1+\pi}\right)^{a_{\pi}} \qquad (1+i_t) = (1+i) \left(\frac{1+\pi_t}{1+\pi}\right)^{\hat{a}_{\pi}} \left[E_t \left(\frac{r_{t+1}^k}{R_t}\right) \middle/ \left(\frac{r^k}{R}\right) \right]^{-\hat{a}_r}$$

• FP rule targets credit spread using a lending subsidy:

$$\tau_{f,t} = \tau_f \left[E_t \left(\frac{r_{t+1}^k}{R_t} \right) \middle/ \left(\frac{r^k}{R} \right) \right]^{a_r}$$

Relevance of Tinbergen's rule

	Optin	Optimized Elasticities			Decomp
Regime	a_{π}	a_{rr}	\check{a}_{rr}	DRR	Full ce
Dual rules (Best Policy)	1.27	2.43	0	-	3.85%
Augmented Taylor rule	1.27	0	0.36	-138bp	5.23%
Standard Taylor rule	1.75	0	0	-264bp	6.49%

- 1. Large welfare costs of risk shocks in general,
- 2. ...but much larger under STR & ATR than DRR
- 3. STR & DRR are "tight money-tight credit" regimes, with larger fluctuations and large efficiency losses due to costly monitoring

Relevance of strategic interaction

Regime $x v$. regime y	Param. v a_{π}	alues of x a_{rr}	ce v. DRR	Decomp. Full ce
Nash	2.12	1.69	30bp.	4.15%
Cooperative ($\varphi = 0.5$)	1.41	2.67	4bp.	3.89%
Cooperative ($\varphi^* = 0.23$)	1.33	2.10	1bp.	3.85%
DRR (Best Policy)	1.27	2.43		3.85%

- 1. Welfare is much lower under Nash than Cooperative
- 2. Nash is again a tight money-tight credit regime, but still dominates STR and ATR
- 3. For SOE's, since *i* is largely exogenous, separate financial policy rules are even more relevant

3. Capital controls and MPP

- Most Fisherian models justify regulating credit, NOT discriminating foreign v. domestic creditors
 - Some do but focusing on heterogeneous borrowers
 - In standard SOE-MPP models, domestic regulation & capital controls are equivalent (e.g. Bianchi (11))
 - Debt & collateral are in different units, but financial assets & liabilities are in same unit (e.g. T goods).
- Mendoza-Rojas: risk-neutral banks intermediate inflows in T units into domestic loans in CPI units
 - Lenders (borrowers) care for ex ante (ex post) int. rate
 - Optimal MPP is again time-inconsistent
 - Mix of capital controls and domestic debt taxes needed for optimal time-consistent policy

Conclusions

- *Promise*: Progress with quantitative models of fin. crises that illustrate MPP effectiveness
- *Challenges*: Optimal MPP is complex, needs to tackle credibility and coordination with MP
 - Carefully evaluated dual rules are necessary to avoid welfare-reducing outcomes.
- Other important hurdles: fin. innovation, information, heterogeneity, int'l coordination, securitization, interconnectedness